OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 8 — Apr. 15, 2004
  • pp: 806–808

Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings

Christoph Greiner, Thomas W. Mossberg, and Dmitri Iazikov  »View Author Affiliations

Optics Letters, Vol. 29, Issue 8, pp. 806-808 (2004)

View Full Text Article

Acrobat PDF (572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a powerful approach to spectral bandpass engineering (apodization) of one-dimensional channel-waveguide Bragg reflectors. Bandpass engineering is accomplished by precise photolithographic control of the length and the longitudinal placement of individual grating lines, which provides unique line-by-line diffractive amplitude and phase control. Channel-waveguide gratings that exhibit complex filtering functions have been fabricated and modeled. When a second-order apodization effect that comprises effective waveguide refractive-index variation with grating-line length is included in the simulation, extraordinary agreement between predicted and observed spectral passband profiles is obtained.

© 2004 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(130.3120) Integrated optics : Integrated optics devices

Christoph Greiner, Thomas W. Mossberg, and Dmitri Iazikov, "Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings," Opt. Lett. 29, 806-808 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. M. Ragdale, D. Reid, D. J. Robbins, J. Buus, and I. Bennion, J. Sel. Areas Commun. 8, 1146 (1990).
  2. M. Horita, S. Tanaka, and Y. Matsushima, Electron. Lett. 34, 2240 (1998).
  3. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  4. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
  5. J. L. Rebola and A. V. T. Cartaxo, J. Lightwave Technol. 8, 1537 (2002).
  6. A. Carballar, M. A. Muriel, and J. Azana, IEEE Photon. Technol. Lett. 11, 694 (1999).
  7. T. Komukai, K. Tamura, and M. Nakazawa, IEEE Photon. Technol. Lett. 9, 934 (1997).
  8. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, J. Lightwave Technol. 21, 32 (2003).
  9. K. O. Hill, B. Malo, F. Bilodeau, S. Theriault, D. C. Johnson, and J. Albert, Opt. Lett. 20, 1438 (1995).
  10. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, Electron. Lett. 35, 1096 (1999).
  11. D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona, IEEE Photon. Technol. Lett. 12, 639 (2000).
  12. D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, and H. Jackel, J. Opt. Soc. Am. B 20, 417 (2003).
  13. Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, IEEE Photon. Technol. Lett. 6, 1222 (1994).
  14. C. Greiner, D. Iazikov, and T. W. Mossberg, “Lithography fabricated planar holographic Bragg reflectors,” J. Lightwave Technol. (to be published).
  15. R. Adar, C. H. Henry, R. H. Kistler, and R. F. Kazarinov, Appl. Phys. Lett. 60, 1779 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited