OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 8 — Apr. 15, 2004
  • pp: 833–835

Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand  »View Author Affiliations

Optics Letters, Vol. 29, Issue 8, pp. 833-835 (2004)

View Full Text Article

Acrobat PDF (576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Yb:GdVO4 single crystal was grown by the Czochralski process. Its thermal conductivity was measured by photothermal analysis and reached 8.1 and 7.1 W m-1 K-1 along and perpendicular to the c axis, respectively. These values are in good agreement with the predicted ones. The optical spectroscopy of the crystal, such as its absorption and emission cross sections under the two polarizations, its fluorescence lifetime, and its laser parameters, is investigated. Cw laser oscillation is obtained for what is to our knowledge the first time in this material under titanium sapphire pumping at 984 nm. We obtain 420 mW of output power for a 2% output coupler at 1029 nm. With a thin sample, the laser wavelength decreases to 1015 nm. In this case the quantum defect is as small as 2.9%. The weak heat release of the material suggests good prospects for its use in high-power applications.

© 2004 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials

J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, "Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity," Opt. Lett. 29, 833-835 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. O. Guillot-Noel, A. Kahn-Harari, B. Viana, D. Vivien, E. Antic, and P. Porcher, J. Phys. Condens. Matter 10, 6491 (1998).
  2. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, Appl. Phys. Lett. 83, 1355 (2003).
  3. A. I. Zagumennyi, V. A. Mikhailov, V. I. Vlasov, A. A. Sirotkin, V. I. Podreshetnikov, Yu. L. Kalachev, Yu. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Laser Phys. 13, 311 (2003).
  4. J. F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mevrel, J. Am. Ceram. Soc. 83, 1993 (2000).
  5. T. Yamakasi and Y. Anzai, presented at the 13th International Conference on Crystal Growth, Kyoto, Japan, July 30–August 4, 2001.
  6. V. Peters, A. Boltz, K. Petermann, and G. Huber, J. Crystal Growth 237–239, 879 (2002).
  7. O. Guillot-Noel, B. Viana, B. Bellamy, and D. Gourier, Phys. Rev. B 60, 1668 (1999).
  8. D. S. Sumida and T. Y. Fan, Opt. Lett. 19, 197 (1994).
  9. A. A. Kaminskiei, A. A. Kaminskii, and M. J. Weber, Crystalline Lasers, Physical Processes and Operating Schemes (CRC, Boca Raton, Fla., 1996).
  10. H. J. Zhang, X. L. Meng, and L. Zhu, Status Solidi A 175, 705 (1999).
  11. H. R. Xia, L. X. Li, H. J. Zhang, X. L. Meng, L. Zhu, Z. H. Yang, X. S. Liu, and J. Y. Wang, J. Appl. Phys. 87, 269 (2000).
  12. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, Appl. Phys. B 69, 3 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited