OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 8 — Apr. 15, 2004
  • pp: 875–877

Polarization singularities in optical lattices

Isaac Freund  »View Author Affiliations

Optics Letters, Vol. 29, Issue 8, pp. 875-877 (2004)

View Full Text Article

Acrobat PDF (1289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization singularities are shown to be unavoidable features of three-dimensional optical lattices. These singularities take the form of lines of circular polarization, C lines, and lines of linear polarization, L lines. The polarization figures surrounding a C line (L line) rotate about the line with winding number ±1/2 (±1). C and L lines permeate the lattice, meander throughout the unit cell, and form closed loops. Surprisingly, every point in a linearly polarized optical lattice is found to be a singularity about which the surrounding polarization vectors rotate with an integer winding number.

© 2004 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.7010) Atomic and molecular physics : Laser trapping
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

Isaac Freund, "Polarization singularities in optical lattices," Opt. Lett. 29, 875-877 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Yuan, G. P. Wang, and X. Huang, Opt. Lett. 28, 1769 (2003).
  2. J. K. Pachos and P. L. Knight, Phys. Rev. Lett. 91, 107902 (2003).
  3. H. P. Buchler and G. Blatter, Phys. Rev. Lett. 91, 130404 (2003).
  4. L. M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).
  5. X. L. Yang and L. Z. Cai, J. Mod. Opt. 50, 1445 (2003).
  6. M. Born and E. W. Wolf, Principles of Optics (Pergamon, Oxford, England, 1959).
  7. J. F. Nye, Natural Focusing and the Fine Structure of Light (Institute of Physics, Bristol, England, 1999).
  8. I. Freund, “Coherency matrix description of optical polarization singularities,” J. Opt. A (to be published).
  9. I. Freund, Opt. Commun. 199, 47 (2001).
  10. F. Gori, J. Opt. Soc. Am. A 18, 1612 (2001).
  11. A. I. Konukhov and L. A. Melnikov, J. Opt. B 3, S139 (2001).
  12. I. Freund, Opt. Lett. 26, 199 (2001).
  13. I. Freund, Opt. Commun. 201, 251 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited