OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 11 — Jun. 1, 2005
  • pp: 1303–1305

Depth-of-focus reduction for digital in-line holography of particle fields

Weidong Yang, Alexander B. Kostinski, and Raymond A. Shaw  »View Author Affiliations

Optics Letters, Vol. 30, Issue 11, pp. 1303-1305 (2005)

View Full Text Article

Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Poor axial precision caused, in part, by large depth of focus (tau) has been a vexing problem in extraction of particle position from digital in-line holograms. A simple method is proposed to combat this depth-of-focus difficulty. The method is based on decoupling of size and position information. With d, Delta, and lambda being particle diameter, CCD pixel size, and the wavelength, respectively, our main theoretical result is the reduction of tau from tau∼d²/lambda to tau∼Delta²/lambda for particles of known size. This result is confirmed in laboratory experiments with holograms of calibrated glass spheres.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(120.3940) Instrumentation, measurement, and metrology : Metrology

Weidong Yang, Alexander B. Kostinski, and Raymond A. Shaw, "Depth-of-focus reduction for digital in-line holography of particle fields," Opt. Lett. 30, 1303-1305 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. D. Hinsch, Meas. Sci. Technol. 13, R61 (2002).
  2. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, Meas. Sci. Technol. 15, 673 (2004).
  3. D. Gabor, in Nobel Lectures, Physics 1971-1980, S.Lundqvist, ed. (World Scientific, Singapore, 1992).
  4. B. J. Thomson, Proc. SPIE 1136, 308 (1989).
  5. C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, UK, 1992).
  6. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, Appl. Opt. 43, 5987 (2004). [CrossRef]
  7. C. S. Vikram and M. L. Billet, Appl. Phys. B 33, 149 (1984).
  8. L. Onural and M. T. Özgen, J. Opt. Soc. Am. A 9, 252 (1992).
  9. L. Onural, Opt. Lett. 18, 846 (1993).
  10. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, Opt. Lasers Eng. 33, 409 (2000). [CrossRef]
  11. S. Coëtmellec, D. Lebrun, and C. Özkul, Appl. Opt. 41, 312 (2002)
  12. S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000). [CrossRef]
  13. R. B. Owen and A. A. Zozulya, Opt. Eng. 39, 2187 (2000). [CrossRef]
  14. G. Pan and H. Meng, Appl. Opt. 42, 827 (2003).
  15. C. Fournier, C. Ducottet, and T. Fournel, Meas. Sci. Technol. 15, 686 (2004).
  16. F. Liu and F. Hussain, Opt. Lett. 23, 132 (1998).
  17. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, Boston, Mass., 1996).
  18. T. Kreis, Opt. Eng. 41, 1829 (2002). [CrossRef]
  19. J. Zhang, B. Tao, and J. Katz, Exp. Fluids 23, 373 (1997). [CrossRef]
  20. J. Sheng, E. Malkiel, and J. Katz, Appl. Opt. 42, 235 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited