OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 11 — Jun. 1, 2005
  • pp: 1312–1314

Wave-front spacing in the focal region of high-numerical-aperture systems

John T. Foley and Emil Wolf  »View Author Affiliations

Optics Letters, Vol. 30, Issue 11, pp. 1312-1314 (2005)

View Full Text Article

Acrobat PDF (130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wave-front spacing in the focal region of an aplanatic focusing system is investigated by use of the vector theory of electromagnetic diffraction for monochromatic, linearly polarized incident light. It is shown that, in systems of high numerical aperture, the wave-front spacing near the focus is significantly larger than the wavelength of the incident light and that the wave-front spacing changes significantly within a few wavelengths of the focus and can be less than a wavelength.

© 2005 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.2990) Imaging systems : Image formation theory
(260.2110) Physical optics : Electromagnetic optics

John T. Foley and Emil Wolf, "Wave-front spacing in the focal region of high-numerical-aperture systems," Opt. Lett. 30, 1312-1314 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. By wave-front spacing we mean the smallest distance between surfaces of constant phase on which the values differ by 2pi. For monochromatic plane-wave fields this distance equals the wavelength, and this is also approximately the case for focused waves of low angular aperture.
  2. C. M. J. Mecca, Y. Li, and E. Wolf, Opt. Commun. 182, 265 (2000). [CrossRef]
  3. Y. Li, C. Mecca, and E. Wolf, J. Mod. Opt. 50, 199 (2003). [CrossRef]
  4. S. Stalling, G. 'T Hooft, and J. Braat, J. Mod. Opt. 51, 775 (2004).
  5. Y. Li, E. Wolf, G. Gbur, and T. D. Visser, J. Mod. Opt. 51, 779 (2004).
  6. E. H. Linfoot and E. Wolf, Proc. Phys. Soc. London Sect. B 69, 823 (1956).
  7. F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
  8. J. W. Gates, J. Sci. Instrum. 33, 507 (1956).
  9. C. F. Bruce and B. S. Thornton, J. Sci. Instrum. 34, 203 (1956).
  10. C. J. R. Sheppard and T. Wilson, Appl. Phys. Lett. 38, 858 (1981). [CrossRef]
  11. D. K. Hamilton and C. J. R. Sheppard, J. Appl. Phys. 60, 2708 (1986).
  12. C. J. R. Sheppard and H. J. Matthews, J. Opt. Soc. Am. A 4, 1354 (1987).
  13. J. F. Bliegen, Appl. Opt. 28, 1972 (1989).
  14. G. S. Kino and S. C. Chim, Appl. Opt. 29, 3775 (1990).
  15. T. Wilson, R. Jusaitis, N. P. Rea, and D. K. Hamilton, Opt. Commun. 119, 1 (1994).
  16. F. C. Chang and G. S. Kino, Appl. Opt. 37, 3471 (1998).
  17. A. Dubois, J. Selb, L. Vabre, and A. Boccara, Appl. Opt. 39, 2326 (2000).
  18. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 664-665. psi(z) is sometimes referred to as the Gouy phase of the Gaussian beam.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited