OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 12 — Jun. 15, 2005
  • pp: 1473–1475

Dielectric waveguide model for guided surface polaritons

Rashid Zia, Anu Chandran, and Mark L. Brongersma  »View Author Affiliations

Optics Letters, Vol. 30, Issue 12, pp. 1473-1475 (2005)

View Full Text Article

Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although surface polariton modes supported by finite-width interfaces can guide electromagnetic energy in three dimensions, we demonstrate for the first time to our knowledge that such modes can be modeled by the solutions of two-dimensional dielectric slab waveguides. An approximate model is derived by a ray-optics interpretation that is consistent with previous investigations of the Fresnel relations for surface polariton reflection. This model is compared with modal solutions for metal stripe waveguides obtained by full vectorial magnetic-field finite-difference methods. The field-symmetric modes of such waveguides are shown to be in agreement with the normalized dispersion relationship for analogous TE modes of dielectric slab waveguides. Lateral confinement is investigated by comparison of power-density profiles, and implications for the diffraction limit of guided polariton modes are discussed.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(160.3220) Materials : Ionic crystals
(160.3900) Materials : Metals
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

Rashid Zia, Anu Chandran, and Mark L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Takahara and T. Kobayashi, Opt. Photonics News 15(10), 54 (Oct. 2004).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  3. N. Ocelic and R. Hillenbrand, Nature Mater. 3, 606 (2004).
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
  5. P. Berini, Opt. Lett. 24, 1011 (1999).
  6. J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003). [CrossRef]
  7. R. Zia, M. D. Selker, and M. L. Brongersma, Phys. Rev. B 71, 165431 (2005).
  8. For a review, see A. A. Maradudin, R. F. Wallis, and G. I. Stegeman, Prog. Surf. Sci. 33, 171 (1990).
  9. G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, and R. F. Wallis, Opt. Lett. 8, 626 (1983).
  10. S. J. Al-Bader, IEEE J. Quantum Electron. 40, 325 (2004). [CrossRef]
  11. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, J. Lightwave Technol. 12, 487 (1994). [CrossRef]
  12. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004).
  13. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 17, 929 (1999). [CrossRef]
  14. Interestingly, our model well approximates the field-antisymmetric sab1 modes of P. Berini, Phys. Rev. B 61, 10484 (2000). Berini uses the method of lines, which, similarly to our model, involves analytical treatment in the vertical direction. [CrossRef]
  15. For example, see H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 6.
  16. H. A. Jamin and S. J. Al-Bader, IEEE Photonics Technol. Lett. 7, 321 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited