OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 12 — Jun. 15, 2005
  • pp: 1518–1520

Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material

J.-Q. Xi, Manas Ojha, Woojin Cho, J. L. Plawsky, W. N. Gill, Th. Gessmann, and E. F. Schubert  »View Author Affiliations

Optics Letters, Vol. 30, Issue 12, pp. 1518-1520 (2005)

View Full Text Article

Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Triple-layer omnidirectional reflectors (ODRs) consisting of a semiconductor, a quarter-wavelength transparent dielectric layer, and a metal have high reflectivities for all angles of incidence. Internal ODRs (ambient material's refractive index n >> 1.0) are demonstrated that incorporate nanoporous SiO2, a low-refractive-index material (n=1.23), as well as dense SiO2(n=1.46). GaP and Ag serve as the semiconductor and the metal layer, respectively. Reflectivity measurements, including angular dependence, are presented. Calculated angle-integrated TE and TM reflectivities for ODRs employing nanoporous SiO2 are R_int|TE = 99.9% and R_int|TM = 98.9%, respectively, indicating the high potential of the ODRs for low-loss waveguide structures.

© 2005 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.4040) Optical devices : Mirrors
(310.6860) Thin films : Thin films, optical properties

J.-Q. Xi, Manas Ojha, Woojin Cho, J. L. Plawsky, W. N. Gill, Th. Gessmann, and E. F. Schubert, "Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material," Opt. Lett. 30, 1518-1520 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Part 1 34, L797 (1995).
  2. G. Kipshidze, V. Kuryatkov, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, Appl. Phys. Lett. 80, 3682 (2002).
  3. T. G. Zhu, J. C. Denyszyn, U. Chowdhury, M. M. Wong, and R. D. Dupuis, IEEE J. Sel. Top. Quantum Electron. 8, 298 (2002).
  4. E. F. Schubert, Light Emitting Diodes (Cambridge U. Press, Cambridge, UK, 2003).
  5. Th. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, IEEE Electron Device Lett. 24, 683 (2003).
  6. J. K. Kim, Th. Gessmann, H. Luo, and E. F. Schubert, Appl. Phys. Lett. 84, 4508 (2004).
  7. S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, Jr., W. N. Gill, and J. L. Plawsky, J. Vac. Sci. Technol. B 17, 205 (1999).
  8. A. Jain, S. Rogojevic, W. N. Gill, and J. L. Plawsky, J. Appl. Phys. 90, 5832 (2001).
  9. A. Jain, S. Rogojevic, S. Ponoth, W. N. Gill, and J. L. Plawsky, J. Appl. Phys. 91, 3275 (2002).
  10. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited