OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 13 — Jul. 1, 2005
  • pp: 1656–1658

Waveguide mode converter based on two-dimensional photonic crystals

Gang Chen and Jin U. Kang  »View Author Affiliations


Optics Letters, Vol. 30, Issue 13, pp. 1656-1658 (2005)
http://dx.doi.org/10.1364/OL.30.001656


View Full Text Article

Acrobat PDF (412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and numerically analyze a novel mode converter based on two-dimensional photonic crystal waveguides with square arrays of cylindrical dielectric rods in air. The mode converter uses small perturbation defects to decouple various modes in the multimode waveguide, thereby permitting propagation of only one mode at any given frequency, which permits one-to-one mode conversion without exciting unwanted modes. The mode converter can efficiently convert a TM_0 mode supported in a single-mode photonic crystal waveguide into a TM_2 mode supported in the multimode waveguide that is laterally coupled to the single-mode waveguide section for a wide wavelength range. Influences of different sizes and positions of perturbation rods on the band structure of the multimode waveguide are studied.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

Citation
Gang Chen and Jin U. Kang, "Waveguide mode converter based on two-dimensional photonic crystals," Opt. Lett. 30, 1656-1658 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-13-1656


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977). [CrossRef]
  2. M. J. Buckley, D. A. Stein, and R. J. Vernon, IEEE Trans. Microwave Theory Tech. 39, 1301 (1991).
  3. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, IEEE J. Quantum Electron. 27, 556 (1991). [CrossRef]
  4. T. Brenner and H. Melchior, IEEE Photonics Technol. Lett. 5, 1053 (1993). [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  7. T. D. Happ, M. Kamp, and A. Forchel, Opt. Lett. 26, 1102 (2001).
  8. C. M. de Sterke, L. C. Botten, A. A. Asatryan, T. P. White, and R. C. McPhedran, Opt. Lett. 29, 1384 (2004). [CrossRef]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
  10. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited