OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 16 — Aug. 15, 2005
  • pp: 2080–2082

Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings

Brent L. Bachim, Oluwafemi O. Ogunsola, and Thomas K. Gaylord  »View Author Affiliations


Optics Letters, Vol. 30, Issue 16, pp. 2080-2082 (2005)
http://dx.doi.org/10.1364/OL.30.002080


View Full Text Article

Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7370) Optical devices : Waveguides

Citation
Brent L. Bachim, Oluwafemi O. Ogunsola, and Thomas K. Gaylord, "Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings," Opt. Lett. 30, 2080-2082 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-16-2080


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. A. B. Miller, Proc. IEEE 88, 728 (2000). [CrossRef]
  2. N. Jokerst, T. K. Gaylord, E. N. Glytsis, M. A. Brooke, S. Cho, T. Nonaka, T. Suzuki, D. L. Geddis, J. Shin, R. A. Villalaz, J. Hall, A. Chellapa, and M. Vrazel, IEEE Trans. Adv. Packag. 27, 376 (2004).
  3. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, J. Lightwave Technol. 22, 2168 (2004).
  4. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, J. Lightwave Technol. 22, 2043 (2004).
  5. T. S. Barry, D. L. Rode, and R. R. Krchnavek, IEEE Trans. Compon., Packag. Manuf. Technol. Part B 20, 225 (1997).
  6. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
  7. S. Lu, Y.-B. Yan, D.-E. Yi, G.-F. Jin, and M.-X. Wu, Opt. Laser Technol. 35, 369 (2003).
  8. G. Meltz, W. W. Morey, and W. H. Glenn, in Digest of Conference on Optical Fiber Communication (Optical Society of America, 1990), p. 24.
  9. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, and D. Y. Kim, Opt. Lett. 28, 155 (2003).
  10. K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, Electron. Lett. 36, 1408 (2000). [CrossRef]
  11. Y. Li and T. Erdogan, Opt. Commun. 183, 377 (2000).
  12. W. T. Chen and L. A. Wang, IEEE Photon. Technol. Lett. 12, 501 (2000).
  13. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998). [CrossRef]
  14. A. V. Mulé, "Volume grating coupler-based optical interconnect technologies for polylithic gigascale interaction," Ph.D. dissertation (Georgia Institute of Technology, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited