OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 16 — Aug. 15, 2005
  • pp: 2086–2088

Symmetry dependence of holograms for optical trapping

Jennifer E. Curtis, Christian H. J. Schmitz, and Joachim P. Spatz  »View Author Affiliations


Optics Letters, Vol. 30, Issue 16, pp. 2086-2088 (2005)
http://dx.doi.org/10.1364/OL.30.002086


View Full Text Article

Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

No iterative algorithm is necessary to calculate holograms for most holographic optical trapping patterns. Instead, holograms may be produced by a simple extension of the prisms-and-lenses method. This formulaic approach yields the same diffraction efficiency as iterative algorithms for any asymmetric or symmetric but nonperiodic pattern of points while requiring less calculation time. A slight spatial disordering of periodic patterns significantly reduces intensity variations between the different traps without extra calculation costs. Eliminating laborious hologram calculations should greatly facilitate interactive holographic trapping.

© 2005 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(090.1760) Holography : Computer holography
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators

Citation
Jennifer E. Curtis, Christian H. J. Schmitz, and Joachim P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-16-2086


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
  2. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, Opt. Lett. 24, 608 (1999).
  3. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000). [CrossRef]
  4. E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, Rev. Sci. Instrum. 72, 1810 (2001). [CrossRef]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002). [CrossRef]
  7. J. E. Curtis and J. P. Spatz, Proc. SPIE 5514, 455 (2004).
  8. M. Konrad, P. Leiderer, and C. Bechinger, Phys. Rev. Lett. 90, 158302 (2003). [CrossRef]
  9. K. Ladavac, K. Kasza, and D. G. Grier, Phys. Rev. E 70, 010901 (2004). [CrossRef]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003). [CrossRef]
  11. M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004). [CrossRef]
  12. S. Lee, K. Ladavac, M. Polin, and D. G. Grier, Phys. Rev. Lett. 94, 110601 (2005). [CrossRef]
  13. P. T. Korda, M. B. Taylor, and D. G. Grier, Phys. Rev. Lett. 89, 128301 (2002). [CrossRef]
  14. W. Losert, C. Poole, P. Bradford, and D. English, Proc. SPIE 5514, 197 (2004).
  15. C. H. J. Schmitz, J. E. Curtis, and J. P. Spatz, Proc. SPIE 5514, 446 (2004).
  16. T. Haist, M. Schönleber, and H. J. Tiziani, Opt. Commun. 140, 299 (1997).
  17. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, Opt. Express 12, 5475 (2004).
  18. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. J. Padgett, and J. Courtial, Opt. Express 12, 1665 (2004). [CrossRef]
  19. G. Sinclair, P. Jordan, J. Courtial, and M. Padgett, Opt. Express 12, 5475 (2004).
  20. G. Sinclair, P. Jordan, J. Leach, and M. Padgett, J. Mod. Opt. 51, 409 (2004).
  21. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, IBM J. Res. Dev. 13, 150 (1969).
  22. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, J. Opt. Soc. Am. A 18, 205 (2001).
  23. In general, phivj can be extended to phivj*=phivj+phivxj with, for example, a lens phase phivLj for 3D positioning or a helical phase phivℓj to change the trap's mode.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited