OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 2 — Jan. 15, 2005
  • pp: 141–143

Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator

Yang Jiao, Shanhui Fan, and David A. B. Miller  »View Author Affiliations

Optics Letters, Vol. 30, Issue 2, pp. 141-143 (2005)

View Full Text Article

Acrobat PDF (547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a powerful design and optimization method for devices in a photonic crystal. The method is based on a Wannier basis field expansion and efficient matrix analysis techniques for searching through a vast number of designs. The method permits the design of many compact optical devices with complex and novel functions. We present a design example of a very compact mode separator that is 8.2 µm × 13.3 µm in size that demultiplexes the three modes of an input photonic crystal multimode waveguide into three single-mode output waveguides. We verify the method with finite-difference time-domain calculations.

© 2005 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(260.2110) Physical optics : Electromagnetic optics

Yang Jiao, Shanhui Fan, and David A. B. Miller, "Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator," Opt. Lett. 30, 141-143 (2005)

Sort:  Author  |  Journal  |  Reset


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Norwood, Mass., 2000).
  2. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org.
  3. R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, J. Opt. A Pure Appl. Opt. 5, S76 (2003).
  4. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
  5. Z. Y. Li and K. M. Ho, Phys. Rev. B 68, 155101 (2003).
  6. E. Moreno, D. Erni, and C. Hafner, Phys. Rev. E 66, 036618 (2002).
  7. J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, Phys. Rev. B 61, 4381 (2000).
  8. K. Busch, S. F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, J. Phys. Condens. Matter 15, R1233 (2003).
  9. R. A. Horn and C. R. Johnson, Matrix Analysis, (Cambridge U. Press, Cambridge, England, 1990), p. 561.
  10. B. T. Lee and S. Y. Shin, Opt. Lett. 28, 1660 (2003).
  11. J. Leuthold, J. Eckner, E. Gamper, P. A. Besse, and H. Melchior, J. Lightwave Technol. 16, 1228 (1998).
  12. Y. Jiao, S. Fan, and D. A. B. Miller, "Photonic crystal device sensitivity analysis with Wannier basis gradients" Opt. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited