OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 30, Iss. 21 — Nov. 1, 2005
  • pp: 2855–2857

Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers

William S. Wong, Xiang Peng, Joseph M. McLaughlin, and Liang Dong  »View Author Affiliations

Optics Letters, Vol. 30, Issue 21, pp. 2855-2857 (2005)

View Full Text Article

Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a novel approach in optical fiber design in which the optical waveguide is formed by a ring of large air holes surrounding a solid silica core. With an appropriate choice of the geometrical configuration, robust single-transverse-mode propagation with a record effective area of 1417 μm2, verified by various methods, was demonstrated. A breakthrough was made toward the development of practical ultra-high-power fiber lasers as we observed negligible loss of the fiber at bending diameters as small as 15 cm.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

William S. Wong, Xiang Peng, Joseph M. McLaughlin, and Liang Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. P. Gapontsev, “Recent progress in beam quality improvement of multi-kW fiber lasers,” presented at SPIE Photonics West, San Jose, Calif., January 22–27, 2005.
  2. M. E. Fermann, Opt. Lett.  23, 52 (1998).
  3. P. Koplow, A. V. Kliner, and L. Goldberg, Opt. Lett.  25, 442 (2000).
  4. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron.  7, 504 (2001). [CrossRef]
  5. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Opt. Express  12, 1313 (2004). [CrossRef]
  6. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Electron. Lett.  39, 1802 (2003). [CrossRef]
  7. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, J. Lightwave Technol.  18, 1084 (2000). [CrossRef]
  8. K. M. Lo, R. C. McPhedran, I. M. Basset, and G. W. Milton, J. Lightwave Technol.  12, 396 (1994). [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, J. Opt. Soc. Am. B  19, 2322 (2002).
  10. B. T. Kuhlmey, Opt. Lett.  27, 1684 (2002).
  11. A. E. Siegman, in Proc. SPIE  1224, 2 (1990).
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  13. J.-S. Gu, P.-A. Besse, and H. Melchior, IEEE J. Quantum Electron.  27, 531 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited