OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 30, Iss. 22 — Nov. 15, 2005
  • pp: 3039–3041

Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes

David S. Bradshaw and David L. Andrews  »View Author Affiliations

Optics Letters, Vol. 30, Issue 22, pp. 3039-3041 (2005)

View Full Text Article

Acrobat PDF (211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a Laguerre-Gaussian (LG) laser mode is used to trap nanoparticles, the spatial disposition of the particles about the beam axis is determined by a secondary mechanism that engages the input radiation with the interparticle potential. This analysis, based on the identification of a range-dependent laser-induced energy shift, elicits and details features that arise for spherical nanoparticles irradiated by a LG mode. Calculations of the absolute minima are performed for LG beams of variable topological charge, and the results are displayed graphically. It is shown that more complex ordered structures emerge on extension to three- and four-particle systems and that similar principles will apply to other kinds of radially structured optical mode.

© 2005 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(140.7010) Lasers and laser optics : Laser trapping
(220.4880) Optical design and fabrication : Optomechanics
(260.2110) Physical optics : Electromagnetic optics
(270.5580) Quantum optics : Quantum electrodynamics
(290.5890) Scattering : Scattering, stimulated

ToC Category:

David S. Bradshaw and David L. Andrews, "Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes," Opt. Lett. 30, 3039-3041 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. J. Padgett and L. Allen, Phys. World 10, 35 (1997).
  2. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Science 249, 749 (1990).
  3. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  4. D. L. Andrews and D. S. Bradshaw, Opt. Lett. 30, 783 (2005).
  5. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, J. Opt. B: Quantum Semiclassical Opt. 4, S66 (2002). [CrossRef]
  6. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).
  7. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London) 412, 313 (2001). [CrossRef]
  8. D. S. Bradshaw and D. L. Andrews, in Proc. SPIE 5736, 87 (2005).
  9. D. S. Bradshaw and D. L. Andrews, Phys. Rev. A 72, 033816 (2005).
  10. D. P. Craig and T. Thirunamachandran, Chem. Phys. 135, 37 (1989). [CrossRef]
  11. R. Passante, E. A. Power, and T. Thirunamachandran, Phys. Rev. A 249, 77 (1998).
  12. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited