OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 30, Iss. 24 — Dec. 15, 2005
  • pp: 3410–3412

Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser

Nathalie Picqué, Fatou Gueye, Guy Guelachvili, Evgeni Sorokin, and Irina T. Sorokina  »View Author Affiliations

Optics Letters, Vol. 30, Issue 24, pp. 3410-3412 (2005)

View Full Text Article

Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intracavity laser absorption spectroscopy (ICLAS) with an evacuated Cr2+:ZnSe laser is performed with a high-resolution time-resolved Fourier transform interferometer with a minimum detectable absorption coefficient equal to 4×10−9 cm−1 Hz−1/2 in the 2.5 µm region. This represents the extreme limit currently reached in the infrared by ICLAS with Doppler-limited resolution. The broad gain band of the crystal allows a spectral coverage at most equal to 125 nm, wide enough to see entire vibration bands. Weak CO2 bands observed up to now only in the Venusian atmosphere are recorded for the first time, to our knowledge, in a laboratory. An H2O detection limit down to 0.9 parts per billion by volume is also demonstrated.

© 2005 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Nathalie Picqué, Fatou Gueye, Guy Guelachvili, Evgeni Sorokin, and Irina T. Sorokina, "Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser," Opt. Lett. 30, 3410-3412 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Nägele and M. W. Sigrist, Appl. Phys. B 70, 895 (2000).
  2. J. Ng, A. H. Kung, A. Miklos, and P. Hess, Opt. Lett. 29, 1206 (2004). [CrossRef]
  3. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, Opt. Lett. 29, 797 (2004). [CrossRef]
  4. V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).
  5. V. M. Baev, V. P. Dubov, A. N. Kireev, E. A. Sviridenkov, D. D. Toptygin, and O. I. Yushchuk, Sov. J. Quantum Electron. 16, 1121 (1986).
  6. I. T. Sorokina, Opt. Mater. 26, 395 (2004).
  7. V. A. Akimov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar'kov, and M. P. Frolov, Quantum Electron. 34, 185 (2004).
  8. N. Picqué and G. Guelachvili, Appl. Opt. 39, 3984 (2000).
  9. P. Connes and G. Michel, Astrophys. J. Lett. 190, L29 (1974).
  10. E. Sorokin and I. T. Sorokina, Appl. Phys. Lett. 80, 3289 (2002). [CrossRef]
  11. HITRAN 2004 spectral database, http://www.hitran.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited