OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 3 — Feb. 1, 2005
  • pp: 266–268

Spectral line narrowing of a photonically generated microwave frequency comb with vertical-cavity surface-emitting laser mode-locked coupled oscillators

H. Music and L. R. Pendrill  »View Author Affiliations

Optics Letters, Vol. 30, Issue 3, pp. 266-268 (2005)

View Full Text Article

Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique is presented for narrowing the spectral linewidth of microwave signals generated photonically by heterodyning a pair of vertical-cavity surface-emitting lasers forming an extended optically coupled cavity. The experimentally demonstrated linewidth reduction, by as much as a factor of 10^4 - to less than 10 kHz in microwave frequencies up to a couple of gigahertz - is approximately ten times that expected with conventional line-narrowing techniques such as optical feedback. An interpretation is given in terms of mode locking in pairs of optically coupled lasers as a first demonstration in the frequency domain of lag synchronization of coupled oscillators. The results of theoretical modeling agree well with the experimental results.

© 2005 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.4910) Optical devices : Oscillators
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(300.3700) Spectroscopy : Linewidth
(350.4010) Other areas of optics : Microwaves

H. Music and L. R. Pendrill, "Spectral line narrowing of a photonically generated microwave frequency comb with vertical-cavity surface-emitting laser mode-locked coupled oscillators," Opt. Lett. 30, 266-268 (2005)

Sort:  Author  |  Journal  |  Reset


  1. S. Gevorgian, L. R. Pendrill, and A. Alping, in Microwave Photonics from Components to Applications and Systems, A. Vilcot, B. Cabon, and J. Chazelas, eds., (Kluwer Academic, Boston, Mass., 2003).
  2. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 78, 4193 (1997).
  3. R. W. Tkach and A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
  4. S. Eriksson and Å. M. Lindberg, J. Opt. B: Quantum Semiclassic. Opt. 4, 149 (2002).
  5. C. Mirasso, M. Kolesik, M. Matus, J. White, and J. Moloney, Phys. Rev. A 65, 013805 (2001).
  6. J. Mulet, C. Mirasso, T. Heil, and I. Fischer, J. Opt. B: Quantum Semiclassic. Opt. 6, 97 (2003).
  7. J. Y. Law and G. P. Agrawal, J. Opt. Soc. Am. B 15, 562 (1997).
  8. N. Fujiwara, Y. Takiguchi, and J. Ohtsubo, Opt. Lett. 28, 1677 (2003).
  9. R. Holwarth, M. Zimmermann, Th. Udem, and T. W. Hänsch, IEEE J. Quantum Electron. 37, 1493 (2001).
  10. K. E. Razavi and P. A. Davies, IEE Proc. Optoelectron. 145 159 (1998).
  11. X. S. Yao and L. Maleki, Opt. Lett. 22, 1867 (1997).
  12. H.-C. Chang, X. Cao, U. K. Mishra, and R. A. York, IEEE Trans. Microwave Theory Tech. 45, 604 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited