OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 4 — Feb. 15, 2005
  • pp: 355–357

High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating

Xu Wang, Koji Matsushima, Ken-ichi Kitayama, Akihiko Nishiki, Naoya Wada, and Fumito Kubota  »View Author Affiliations


Optics Letters, Vol. 30, Issue 4, pp. 355-357 (2005)
http://dx.doi.org/10.1364/OL.30.000355


View Full Text Article

Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation and recognition of a record-length 511-chip optical code is experimentally demonstrated by use of a superstructured fiber Bragg grating (SSFBG) with a chip rate of 640 Gchips/s. Very high reflectivity (92%) is achieved with high-quality correlation properties. The temperature deviation tolerance is approximately ±0.3°C, which is within the package's temperature stability range (±0.1°C). Experimental results show good agreement with the theory. They indicate the SSFBG's potential for processing a long optical code with an ultrahigh chip rate, which could significantly improve the system's performance.

© 2005 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4250) Fiber optics and optical communications : Networks
(070.4550) Fourier optics and signal processing : Correlators

Citation
Xu Wang, Koji Matsushima, Ken-ichi Kitayama, Akihiko Nishiki, Naoya Wada, and Fumito Kubota, "High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating," Opt. Lett. 30, 355-357 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-4-355


Sort:  Author  |  Journal  |  Reset

References

  1. J. A. Salihi and C. A. Brackett, IEEE Trans. Commun. 37, 824 (1989).
  2. K. Kitayama, IEEE J. Sel. Areas Commun. 16, 1209 (1998).
  3. K. Kitayama and N. Wada, IEEE Photon. Technol. Lett. 11, 1689 (1999).
  4. K. Kitayama and M. Murata, J. Lightwave Technol. 21, 2753 (2003).
  5. X. Wang and K. Kitayama, J. Lightwave Technol. 22, 2226 (2004).
  6. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, J. Lightwave Technol. 19, 1352 (2001).
  7. P. C. Teh, M. Ibsen, J. H. Lee, P. Petropoulos, and D. J. Richardson, IEEE Photon. Technol. Lett. 14, 227 (2002).
  8. X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, Opt. Express 12 5457 (2004), http://www.opticsexpress.org.
  9. X. Wang, A. Nishiki, and K. Kitayama, Microwave Opt. Technol. Lett. 43, 247 (2004).
  10. K. Matsushima, X. Wang, S. Kutsuzawa, A. Nishiki, S. Oshiba, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 16, 2192 (2004).
  11. E. H. Dinan and B. Jabbari, IEEE Commun. Mag. 36, 48 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited