OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 5 — Mar. 1, 2005
  • pp: 468–470

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge  »View Author Affiliations


Optics Letters, Vol. 30, Issue 5, pp. 468-470 (2005)
http://dx.doi.org/10.1364/OL.30.000468


View Full Text Article

Acrobat PDF (588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al.,Appl.Opt.38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1000) Holography : Aberration compensation
(100.2000) Image processing : Digital image processing
(110.1650) Imaging systems : Coherence imaging
(170.1650) Medical optics and biotechnology : Coherence imaging

Citation
Pierre Marquet, Benjamin Rappaz, Pierre J. Magistretti, Etienne Cuche, Yves Emery, Tristan Colomb, and Christian Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-5-468


Sort:  Author  |  Journal  |  Reset

References

  1. F. Zernike, Physica 9, 686 (1942).
  2. F. Zernike, Physica 9, 974 (1942).
  3. G. Nomarski, J. Phys. Radium 16, 9 (1955).
  4. M. Pluta, Advanced Light Microscopy, (Elsevier, New York, 1988) Vol. 2.
  5. R. Pawluczyk, Appl. Opt. 28, 3871 (1989).
  6. G. A. Dunn and D. Zicha, J. Cell Sci. 108, 1239 (1995).
  7. J. Farinas and A. S. Verkman, Biophys. J. 71, 3511 (1996).
  8. U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
  9. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1121 (1998).
  10. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
  11. G. Indebetouw and P. Klysubun, J. Opt. Soc. Am. A 18, 319 (2001).
  12. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085 (1999).
  13. A. Stadelmaier and J. H. Massig, Opt. Lett. 25, 1630 (2000).
  14. E. Cuche, F. Bevilaqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
  15. G. J. Brewer, J. R. Torricelli, E. K. Evege, and P. J. Price, J. Neurosci. Res. 35, 567 (1993).
  16. A. Dunn and R. Richards-Kortum, IEEE J. Select. Top. Quant. Electron. 2, 898 (1996).
  17. E. B. Van Munster, L. J. Van Vliet, and J. A. Aten, J. Microsc. (Oxford) 188, 149 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited