OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 5 — Mar. 1, 2005
  • pp: 510–512

Nanolayer characterization through wavelength multiplexing of a microsphere resonator

Mayumi Noto, Frank Vollmer, David Keng, Iwao Teraoka, and Stephen Arnold  »View Author Affiliations

Optics Letters, Vol. 30, Issue 5, pp. 510-512 (2005)

View Full Text Article

Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We optically characterize nanolayer (< 150 nm) formation in situ on a silica microsphere in an aqueous environment by simultaneously following the shifts of whispering-gallery modes at two wavelengths. This approach was inspired by layer perturbation theory, which indicates that these two measurements can be used to determine independently both the thickness and the optical dielectric constant. The theory is verified for extreme cases and used to characterize a biophysically relevant hydrogel nanolayer with an extremely small excess refractive index of 0.0012.

© 2005 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(300.6490) Spectroscopy : Spectroscopy, surface

Mayumi Noto, Frank Vollmer, David Keng, Iwao Teraoka, and Stephen Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005)

Sort:  Author  |  Journal  |  Reset


  1. P. N. Prasad, Introduction to Biophotonics, (Wiley, New York, 2003).
  2. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
  3. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
  4. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering, (Cambridge University, Cambridge, England, 1992).
  5. S. Arnold, M. Noto, and F. Vollmer, in Frontiers of Optical Spectroscopy: Investigating Extreme Physical Conditions with Advanced Optical Techniques, B. DiBartolo, ed., (Kluwer Academic, Dordrecht, The Netherlands, ) to be published .
  6. S. Arnold and S. Holler, in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds., (Academic, San Diego, Calif., 2002), pp. 227-253.
  7. E. S. C. Ching, P. T. Leung, and K. Young, in Optical Process in Microcavity, R. K. Chang, and A. J. Campillo, eds., (World Scientific, Singapore, 1996), pp. 1-76.
  8. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
  9. J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
  10. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
  11. T. J. Su, J. R. Lu, R. K. Thomas, Z. F. Cui, and J. Penfold, J. Phys. Chem. B 102, 8100 (1998).
  12. I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B 20, 1937 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited