OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 5 — Mar. 1, 2005
  • pp: 522–524

Reflective-type configuration for nearly phase-matching Cerenkov second-harmonic generation in a nonlinear-optical polymer waveguide

Feng Wang, Zhuangqi Cao, and Qishun Shen  »View Author Affiliations

Optics Letters, Vol. 30, Issue 5, pp. 522-524 (2005)

View Full Text Article

Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new technique for achieving efficient Cerenkov-type second-harmonic generation (SHG) in a nonlinear-optical (NLO) polymer waveguide is presented. The configuration, which can prevent the losses of light caused by relatively long-distance propagation and the multiple reflections that appear in the conventional Cerenkov technique, exhibits ease of fabrication and compactness. We experimentally observed a conversion efficiency of 1.6% W^-1 cm^-1, which to our knowledge is the highest value reported for Cerenkov SHG in polymer, by tuning both the thickness and the refractive index of the polymer film close to phase matching between a guided fundamental wave and a guided harmonic wave. The experimental results agreed well with the theoretical prediction.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

Feng Wang, Zhuangqi Cao, and Qishun Shen, "Reflective-type configuration for nearly phase-matching Cerenkov second-harmonic generation in a nonlinear-optical polymer waveguide," Opt. Lett. 30, 522-524 (2005)

Sort:  Author  |  Journal  |  Reset


  1. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
  2. T. Doumuki, H. Tamada, and M. Saitoh, Appl. Phys. Lett. 64, 3533 (1994).
  3. R. Burzynski, B. P. Singh, and P. N. Prasad, Appl. Phys. Lett. 53, 2011 (1998).
  4. M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, Appl. Phys. Lett. 53, 2374 (1998).
  5. Y. Chen, M. Kamath, A. Jain, J. Kumar, and S. Tripathy, Opt. Commun. 101, 231 (1993).
  6. W. Hickel, B. Menges, O. Althoff, D. Lupo, U. Falk, and U. Scheunemann, Thin Solid Films 244, 966 (1994).
  7. K. Schmitt, C. Benecke, and M. Schadt, J. Appl. Phys. 81, 11 (1997).
  8. M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
  9. N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
  10. K. Chikuma and S. Umegaki, J. Opt. Soc. Am. B 7, 768 (1990).
  11. V. Mahalakshmi, M. R. Shenoy, and K. Thyagarajan, IEEE J. Quantum Electron. 32, 137 (1996).
  12. N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, IEEE J. Quantum Electron. 28, 1798 (1992).
  13. R. S. Chang and S. Y. Shaw, J. Mod. Opt. 45, 103 (1998).
  14. J. Ctyroký and L. Kotacka, Opt. Quantum Electron. 32, 799 (2000).
  15. L. Kotacka and J. Ctyroký, Opt. Quantum Electron. 33, 541 (2001).
  16. H. J. W. M. Hoekstra, J. Ctyroký, and L. Kotacka, J. Lightwave Technol. 21, 299 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited