OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 5 — Mar. 1, 2005
  • pp: 552–554

Microcavity confinement based on an anomalous zero group-velocity waveguide mode

Mihai Ibanescu, Steven G. Johnson, David Roundy, Yoel Fink, and J. D. Joannopoulos  »View Author Affiliations

Optics Letters, Vol. 30, Issue 5, pp. 552-554 (2005)

View Full Text Article

Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a mechanism for small-modal-volume high-Q cavities based on an anomalous uniform waveguide mode that has zero group velocity at a nonzero wave vector. In a short piece of a uniform waveguide with a specially designed cross section, light is confined longitudinally by small group-velocity propagation and transversely by a reflective cladding. The quality factor Q is greatly enhanced by the small group velocity for a set of cavity lengths that are separated by approximately pi/k_0, where k_0 is the longitudinal wave vector for which the group velocity is zero.

© 2005 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

Mihai Ibanescu, Steven G. Johnson, David Roundy, Yoel Fink, and J. D. Joannopoulos, "Microcavity confinement based on an anomalous zero group-velocity waveguide mode," Opt. Lett. 30, 552-554 (2005)

Sort:  Author  |  Journal  |  Reset


  1. K. J. Vahala, Nature 424, 839 (2003).
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
  3. M. Soljacic, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and Y. Fink, Opt. Lett. 28, 516 (2003).
  4. J. Vuckovic and Y. Yamamoto, Appl. Phys. Lett. 82, 2374 (2003).
  5. D. Ochoa, R. Houdre, M. Ilegems, H. Benisty, T. F. Krauss, and C. J. M. Smith, Phys. Rev. B 61, 4806 (2000).
  6. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, Phys. Rev. E 65, 016608 (2000).
  7. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
  8. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D. Joannopoulos, Opt. Lett. 27, 1785 (2002).
  9. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
  10. K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002), http://www.opticsexpress.org.
  11. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, Appl. Phys. Lett. 78, 3388 (2001).
  12. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, Phys. Rev. Lett. 92, 063903 (2004).
  13. P. J. B. Clarricoats and R. A. Waldron, J. Electron. Control 8, 455 (1960).
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., (Artech, Norwood, Mass., 2000).
  15. V. A. Mandelshtam and H. Taylor, J. Chem. Phys. 107, 6756 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited