OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 5 — Mar. 1, 2005
  • pp: 558–560

Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance

Matteo Rini, Andrea Cavalleri, Robert W. Schoenlein, René López, Leonard C. Feldman, Richard F. Haglund, Jr., Lynn A. Boatner, and Tony E. Haynes  »View Author Affiliations

Optics Letters, Vol. 30, Issue 5, pp. 558-560 (2005)

View Full Text Article

Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the ultrafast insulator-to-metal transition in nanoparticles of VO2, obtained by ion implantation and self-assembly in silica. The nonmagnetic, strongly correlated compound VO2 undergoes a reversible phase transition, which can be photoinduced on an ultrafast time scale. In the nanoparticles, prompt formation of the metallic state results in the appearance of surface-plasmon resonance. We achieve large, ultrafast enhancement of optical absorption in the near-infrared spectral region that encompasses the wavelength range for optical-fiber communications. One can further tailor the response of the nanoparticles by controlling their shape.

© 2005 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

Matteo Rini, Andrea Cavalleri, Robert W. Schoenlein, René López, Leonard C. Feldman, Richard F. Haglund, Jr., Lynn A. Boatner, and Tony E. Haynes, "Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance," Opt. Lett. 30, 558-560 (2005)

Sort:  Author  |  Journal  |  Reset


  1. K. Miyano, T. Tanaka, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 78, 4257 (1997).
  2. T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, and M. Kuwata-Gonokami, Phys. Rev. Lett. 85, 2204 (2000).
  3. S. Iwai, M. Ono, A. Maeda, H. Matsuzaki, H. Kishida, H. Okamoto, and Y. Tokura, Phys. Rev. Lett. 91, 057401 (2003).
  4. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
  5. H. W. Verleur, A. S. Barker, Jr., and C. N. Berglund, Phys. Rev. 172, 788 (1968).
  6. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, J. Appl. Phys. 79, 2404 (1994).
  7. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
  8. A. Cavalleri, Th. Dekorsy, H. H. Chong, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. B 70, 161102 (2004).
  9. Samples are prepared by implantation of vanadium ions (1.5×1017 V ions/cm2 at 150keV) and oxygen ions (3.0×1017 O ions/cm2 at 55keV) at equal depths of 120nm into an amorphous SiO2 substrate and then annealing in an argon atmosphere at 1000°C. Depending on the annealing time, the mean radius of the nanoparticles varies from 40 to 80nm. See R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, Jr., J. Appl. Phys. 92, 4031 (2002).
  10. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund, Jr., Opt. Lett. 27, 1327 (2002).
  11. H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).
  12. The experimental setup is based on a 1-kHz Ti:sapphire laser. Pump pulses at 800nm have1-3-mJ energy and durations below 50fs. Near-infrared pulses are obtained from an optical parametric amplifier (signal, 1.1-1.6mm; idler, 1.6-2.6mm). Mid-infrared 2.8-6mm pulses are generated by difference-frequency mixing in GaSe of signal and idler pulses. The time resolution varies from 100 to 150fs, with increasing values from high to low frequencies. As the phase transition is fully reversible, the sample is not moved from shot to shot. .
  13. The particles are considered perfect ellipsoids placed in a homogeneous electromagnetic field with their major axes perpendicular to the direction of light propagation and a random in-plane orientation. Inhomogeneous effects that are due to a size and aspect ratio distribution of the nanorods are neglected, as are interparticle coupling mechanisms. The complex dielectric function of the high-temperature metallic VO2 is employed.
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited