OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 6 — Mar. 15, 2005
  • pp: 652–654

Silicon microlens structures fabricated by scanning-probe gray-scale oxidation

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, and S. Gwo  »View Author Affiliations

Optics Letters, Vol. 30, Issue 6, pp. 652-654 (2005)

View Full Text Article

Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the micromachining of silicon microlens structures by use of scanning-probe gray-scale anodic oxidation along with dry anisotropic etching. Convex, concave, and arbitrarily shaped silicon microlenses with diameters as small as 2µm are demonstrated. We also confirm the high fidelity of pattern transfer between the probe-induced oxides and the etched silicon microlens structures. Besides the flexibility, the important features of scanning-probe gray-scale anodic oxidation are small pixel size and pitch (of the order of tens of nanometers), an unlimited number of gray-scale levels, and the possibility of creating arbitrarily designed microlens structures with exquisite precision and resolution. With this approach, refractive, diffractive, and hybrid microlens arrays can be developed to create innovative optical components.

© 2005 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(220.3740) Optical design and fabrication : Lithography
(230.4000) Optical devices : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, and S. Gwo, "Silicon microlens structures fabricated by scanning-probe gray-scale oxidation," Opt. Lett. 30, 652-654 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. F. Borreli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, New York, 1999).
  2. S. Sinzinger and J. Jahns, Microoptics, 2nd ed. (Wiley-VCH, Weinheim, Germany, 2003).
  3. T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82, 3692 (2003). [CrossRef]
  4. S.-H. Park, H. Jeon, Y.-J. Sung, and G.-Y. Yeom, Appl. Opt. 40, 3698 (2001).
  5. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnel, and A. M. Gurney, Appl. Phys. Lett. 84, 2754 (2004). [CrossRef]
  6. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, Phys. Rev. Lett. 89, 097903 (2002). [CrossRef]
  7. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990). [CrossRef]
  8. E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Campbell, Appl. Phys. Lett. 66, 1729 (1995). [CrossRef]
  9. F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W.-F. Hsieh, Appl. Phys. Lett. 75, 2429 (1999). [CrossRef]
  10. F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, Appl. Phys. Lett. 76, 360 (2000). [CrossRef]
  11. F. S.-S. Chien, W.-F. Hsieh, S. Gwo, A. E. Vladar, and J. A. Dagata, J. Appl. Phys. 91, 10044 (2002). [CrossRef]
  12. M. Calleja and R. García, Appl. Phys. Lett. 76, 3427 (2000). [CrossRef]
  13. J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, Appl. Phys. Lett. 76, 2710 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited