OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 7 — Apr. 1, 2005
  • pp: 708–710

Photothermal effects in passive fiber Bragg grating resonators

Jong H. Chow, Benjamin S. Sheard, David E. McClelland, Malcolm B. Gray, and Ian C. M. Littler  »View Author Affiliations


Optics Letters, Vol. 30, Issue 7, pp. 708-710 (2005)
http://dx.doi.org/10.1364/OL.30.000708


View Full Text Article

Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photothermal effects in passive Fabry-Perot resonators are caused by the conversion of circulating optical energy into heat as a result of absorption. This results in thermal change in the resonator's optical path length, the round-trip phase, and hence the resonance condition. We describe a simplified dynamic numerical model for photothermal effects in passive fiber Bragg grating resonators and present results of their experimental observation.

© 2005 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(140.6810) Lasers and laser optics : Thermal effects
(190.4870) Nonlinear optics : Photothermal effects
(230.1480) Optical devices : Bragg reflectors

Citation
Jong H. Chow, Benjamin S. Sheard, David E. McClelland, Malcolm B. Gray, and Ian C. M. Littler, "Photothermal effects in passive fiber Bragg grating resonators," Opt. Lett. 30, 708-710 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-7-708


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Canning and M. G. Sceats, Electron. Lett. 30, 16 (1994).
  2. M. Gupta, H. Jiao, and A. O(Keefe, Opt. Lett. 27, 21 (2002).
  3. A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom-munications and Sensing (Aretch House, Norwood, Mass., 1999), and references therein.
  4. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, arXivi.org e-Print archive, physics/0411101, November 9, 2004, http://www.arxiv.org/abs/physics/0411101.
  5. J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 24 (1994).
  6. W. S. Man, Y. Z. Xu, and H. Y. Tam, IEEE Photonics Technol. Lett. 11, 11 (1999).
  7. S. Radic, N. George, and G. P. Agrawal, Opt. Lett. 19, 21 (1994).
  8. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999). [CrossRef]
  9. M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, Phys. Rev. D 63, 082003 (2001). [CrossRef]
  10. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, and D. E. McClelland, Phys. Rev. A 69, 051801 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited