OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 7 — Apr. 1, 2005
  • pp: 720–722

Deposition of overlays by electrostatic self-assembly in long-period fiber gratings

Ignacio Del Villar, Miguel Achaerandio, Ignacio R. Matías, and Francisco J. Arregui  »View Author Affiliations

Optics Letters, Vol. 30, Issue 7, pp. 720-722 (2005)

View Full Text Article

Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It was proved that the deposition of an overlay material onto a long-period fiber grating causes important shifts in the wavelengths of the typical attenuation bands that are caused by coupling between cladding and core modes [Opt. Lett. 27, 682 (2002)]. A theoretical model for analyzing a multilayer cylindrical waveguide is presented that permits the phenomenon to be understood and predicted. An overlay of higher refractive index than the cladding starts to guide a mode if a certain thickness value is exceeded. This causes large shifts in the resonance wavelength induced by the grating. One important application of this phenomenon to sensors is enhancement of the sensitivity of a long-period fiber grating to ambient conditions. Theoretical results are corroborated with experimental ones obtained by electrostatic self-assembly.

© 2005 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(260.2110) Physical optics : Electromagnetic optics
(310.1860) Thin films : Deposition and fabrication

Ignacio Del Villar, Miguel Achaerandio, Ignacio R. Matías, and Francisco J. Arregui, "Deposition of overlays by electrostatic self-assembly in long-period fiber gratings," Opt. Lett. 30, 720-722 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996). [CrossRef]
  2. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998). [CrossRef]
  4. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Opt. Express 11, 476 (2003), http://www.opticsexpress.org.
  5. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
  6. D. B. Stegall and T. Erdogan, IEEE Photonics Technol. Lett. 11, 343 (1999). [CrossRef]
  7. R. Hou, Z. Ghassemlooy, A. Hassan, C. Lu, and K. P. Dowker, Meas. Sci. Technol. 12, 1709 (2001).
  8. Y. Koymada, IEEE Photonics Technol. Lett. 13, 308 (2001). [CrossRef]
  9. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, Opt. Lett. 27, 686 (2002).
  10. M. Achaerandio, F. J. Arregui, and I. R. Matías, Proc. SPIE 5502, 300 (2004).
  11. G. Decher, Science 277, 1232 (1997). [CrossRef]
  12. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 21, 218 (2003).
  13. I. Del Villar, F. J. Arregui, and I. R. Matías, "ESA based in-fiber nanocavity for hydrogen-peroxide detection," IEEE Trans. Nanotechnol. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited