Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Direct laser writing defects in holographic lithography-created photonic lattices

Not Accessible

Your library or personal account may give you access

Abstract

As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Arbitrary-lattice photonic crystals created by multiphoton microfabrication

Hong-Bo Sun, Ying Xu, Saulius Juodkazis, Kai Sun, Mitsuru Watanabe, Shigeki Matsuo, Hiroaki Misawa, and Junji Nishii
Opt. Lett. 26(6) 325-327 (2001)

Three-dimensional woodpile photonic crystal templates for the infrared spectral range

Vygantas Mizeikis, Kock Khuen Seet, Saulius Juodkazis, and Hiroaki Misawa
Opt. Lett. 29(17) 2061-2063 (2004)

Fabrication of photonic crystals with functional defects by one-step holographic lithography

Juntao Li, Yikun Liu, Xiangsheng Xie, Peiqing Zhang, Bing Liang, Li Yan, Jianying Zhou, Gershon Kurizki, Daniel Jacobs, Kam Sing Wong, and Yongchun Zhong
Opt. Express 16(17) 12899-12904 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.