OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 30, Iss. 8 — Apr. 15, 2005
  • pp: 896–898

Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser

Gianluca Piazza, Kenneth Castelino, Albert P. Pisano, and Constance J. Chang-Hasnain  »View Author Affiliations


Optics Letters, Vol. 30, Issue 8, pp. 896-898 (2005)
http://dx.doi.org/10.1364/OL.30.000896


View Full Text Article

Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser (VCSEL). The main advantages of piezoelectric actuation compared with conventional capacitive techniques are improved wavelength control, reduced external and tilt losses, and lower power supply voltages. The details of the piezoelectric actuation scheme for a 980-nm VCSEL with a variable air gap are described. A tuning range of ∼35 nm can theoretically be achieved with a 3-V power supply (2× reduction from that of electrostatic actuation) by use of a 250-µm-long cantilever beam. The proposed actuation mechanism is insensitive to the pull-in phenomenon, therefore improving wavelength control and reducing threshold current. Drastic improvements in power efficiency make it ideal for low-power applications such as all-optical communication, chip-scale atomic clocks, and biological studies.

© 2005 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Citation
Gianluca Piazza, Kenneth Castelino, Albert P. Pisano, and Constance J. Chang-Hasnain, "Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser," Opt. Lett. 30, 896-898 (2005)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-8-896


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 6, 978 (2000). [CrossRef]
  2. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 8, 98 (1996). [CrossRef]
  3. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, Electron. Lett. 31, 228 (1995). [CrossRef]
  4. C. F. R. Mateus, J.-S. P. Hung, C. J. Chang-Hasnain, B. Cunningham, P. Li, H. Yao, G. Hasnain, C. Kuo, and A. Liao, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 2-3.
  5. M. Y. Li, W. P. Yuen, G. S. Li, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 10, 18 (1998). [CrossRef]
  6. C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photonics Technol. Lett. 14, 819 (2002). [CrossRef]
  7. J. Soderkvist and K. Hjort, J. Micromech. Microeng. 4, 28 (1994). [CrossRef]
  8. E. C. Vail, G. S. Li, W. P. Yuen, and C. J. Chang-Hasnain, IEEE J. Sel. Top. Quantum Electron. 3, 691 (1997).
  9. M. S. Weinberg, J. Microelectromech. Syst. 8, 529 (1999). [CrossRef]
  10. S. Ramo, J. Whinnery, and T. VanDuzer, Fields and Waves in Communication (Wiley, New York, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited