OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 10 — May. 15, 2006
  • pp: 1534–1536

Terahertz demonstrations of effectively two-dimensional photonic bandgap structures

Yuguang Zhao and D. Grischkowsky  »View Author Affiliations

Optics Letters, Vol. 31, Issue 10, pp. 1534-1536 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (156 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate effectively two-dimensional (2D) terahertz (THz) photonic bandgap (PBG) structures for transverse electromagnetic (TEM) mode propagation within metal parallel plate waveguides (PPWG). The 2D-PBG structures consisting of square arrays of dielectric cylinders were characterized by THz time-domain spectroscopy (THz-TDS). THz photonic bandgaps were observed, as determined by the 160 μ m lattice constant, the 65 μ m diameter, and the dielectric constant of the cylinders. The experimental measurements were fitted with excellent agreement to 2D theory, confirming that for TEM mode propagation, effectively 2D propagation experiments can be achieved within the bounded space of the PPWG.

© 2006 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:

Original Manuscript: January 19, 2006
Revised Manuscript: February 20, 2006
Manuscript Accepted: February 24, 2006

Yuguang Zhao and D. Grischkowsky, "Terahertz demonstrations of effectively two-dimensional photonic bandgap structures," Opt. Lett. 31, 1534-1536 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001). [CrossRef]
  2. S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 83, 3656 (2003). [CrossRef]
  3. J. Dai, S. Coleman, and D. Grischkowsky, Appl. Phys. Lett. 85, 884 (2004). [CrossRef]
  4. S. Y. Lin and G. Arjavalingam, J. Opt. Soc. Am. B 11, 2124 (1994). [CrossRef]
  5. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, Appl. Phys. Lett. 65, 645 (1994). [CrossRef]
  6. S. Y. Lin, V. M. Hietala, and S. K. Lyo, Appl. Phys. Lett. 68, 3233 (1996). [CrossRef]
  7. P. M. Bell, J. B. Pendry, L. Martin Moreno, and A. J. Ward, Comput. Phys. Commun. 85, 306 (1995). [CrossRef]
  8. Andrew L. Reynolds, Translight Software, University of Glasgow, UK, September 2, 2000.
  9. Z. Jian, J. Pearce, and D. Mittleman, Opt. Lett. 29, 2067 (2004). [CrossRef] [PubMed]
  10. A. Bingham, Y. Zhao, and D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005). [CrossRef]
  11. H. Lorenz, M. Despont, N. Fahrni, N. LaBlanca, R. Renaud, and P. Vettiger, J. Micromech. Microeng. 7, 121 (1997). [CrossRef]
  12. S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, Electron. Lett. 35, 243 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited