OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 13 — Jul. 1, 2006
  • pp: 2063–2065

Two-dimensional spectral shearing interferometry for few-cycle pulse characterization

Jonathan R. Birge, Richard Ell, and Franz X. Kärtner  »View Author Affiliations


Optics Letters, Vol. 31, Issue 13, pp. 2063-2065 (2006)
http://dx.doi.org/10.1364/OL.31.002063


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method for measuring the spectral phase of ultrashort pulses that utilizes spectral shearing interferometry with zero delay. Unlike conventional spectral phase interferometry for direct electric-field reconstruction, which encodes phase as a sensitively calibrated fringe in the spectral domain, two-dimensional spectral shearing interferometry robustly encodes phase along a second dimension. This greatly reduces demands on the spectrometer and allows for complex phase spectra to be measured over extremely large bandwidths, potentially exceeding 1.5 octaves.

© 2006 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 7, 2006
Revised Manuscript: April 11, 2006
Manuscript Accepted: April 13, 2006

Citation
Jonathan R. Birge, Richard Ell, and Franz X. Kärtner, "Two-dimensional spectral shearing interferometry for few-cycle pulse characterization," Opt. Lett. 31, 2063-2065 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-13-2063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Iaconis and I. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999). [CrossRef]
  2. L. Gallmann, D. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Appl. Phys. B 70, S67 (2000).
  3. R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. Li, A. Suguro, and M. Yamashita, Meas. Sci. Technol. 13, 1710 (2002). [CrossRef]
  4. C. Dorrer and I. Walmsley, Appl. Phys. B 74, S209 (2002). [CrossRef]
  5. S. Jensen and M. Anderson, Appl. Opt. 43, 883 (2004). [CrossRef] [PubMed]
  6. J. Nicholson, J. Jasapara, W. Rudolph, F. Omenetto, and A. Taylor, Opt. Lett. 24, 1774 (1999). [CrossRef]
  7. D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993). [CrossRef]
  8. J. Chung and A. Weiner, IEEE J. Sel. Top. Quantum Electron. 7, 656 (2001). [CrossRef]
  9. B. Seifert, H. Stolz, and M. Tasche, J. Opt. Soc. Am. B 21, 1089 (2004). [CrossRef]
  10. K. Yamane, Z. Zhang, K. Oka, R. Morita, and M. Yamashita, Opt. Lett. 28, 2258 (2003). [CrossRef] [PubMed]
  11. P. Baum, S. Lockbrunner, and E. Riedle, Opt. Lett. 29, 210 (2004). [CrossRef] [PubMed]
  12. E. Kosik, A. Radunksy, I. Walmsley, and C. Dorrer, Opt. Lett. 30, 326 (2005). [CrossRef] [PubMed]
  13. NanoLayers GmbH, www.nanolayers.de, Venteon UltraBroad.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited