OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 15 — Aug. 1, 2006
  • pp: 2287–2289

Self-starting mode locking by multi-spatial-mode active waveguiding

Weiguo Yang  »View Author Affiliations

Optics Letters, Vol. 31, Issue 15, pp. 2287-2289 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel principle of self-starting mode locking in a compact semiconductor laser diode, where the needed saturable loss is provided by spatial effects resulting from multi-spatial-mode active waveguiding. The demonstrated device operates over a 1.54 μ m wavelength range and has a repetition rate of 47 GHz . The pulse width is below 5 ps , and the average power coupled to the cleaved single-mode fiber is nearly 0 dBm .

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Integrated Optics

Original Manuscript: January 27, 2006
Revised Manuscript: May 3, 2006
Manuscript Accepted: May 9, 2006
Published: July 10, 2006

Weiguo Yang, "Self-starting mode locking by multi-spatial-mode active waveguiding," Opt. Lett. 31, 2287-2289 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science, 1986).
  2. J. X. Tull, M. A. Dugan, W. S. Warren, Adv. Magn. Opt. Reson. 20, 1 (1996). [CrossRef]
  3. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  4. H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975). [CrossRef]
  5. H. A. Haus, J. Appl. Phys. 46, 3049 (1975). [CrossRef]
  6. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, Opt. Lett. 17, 1292 (1992). [CrossRef] [PubMed]
  7. H. A. Haus, E. P. Ippen, and K. R. Tamura, IEEE J. Quantum Electron. QE-30, 200 (1994). [CrossRef]
  8. P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, IEEE Trans. Electron Devices 36, 2607 (1989). [CrossRef]
  9. For a more recent state of the art, see K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlwe, J. Mork, D. Birkedal, J. M. Hvam, and J. Hanberg, IEEE Photon. Technol. Lett. 16, 975 (2004).
  10. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, Science 290, 1739 (2000). [CrossRef] [PubMed]
  11. Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, Phys. Rev. A 65, 043807 (2002). [CrossRef]
  12. M. Zirngibl, C. H. Joyner, and B. Glance, IEEE Photon. Technol. Lett. 6, 513 (1994). [CrossRef]
  13. C. R. Doerr, C. H. Joyner, and L. W. Stulz, IEEE Photon. Technol. Lett. 11, 1348 (1999). [CrossRef]
  14. D. Van Thourhout, P. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, IEEE J. Sel. Top. Quantum Electron. 8, 1211 (2002). [CrossRef]
  15. K. Y. Lau, J. Lightwave Technol. 7, 400 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited