OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 16 — Aug. 15, 2006
  • pp: 2381–2383

Diabolo creation and annihilation

Isaac Freund, Marat S. Soskin, Roman I. Egorov, and Vladimir Denisenko  »View Author Affiliations

Optics Letters, Vol. 31, Issue 16, pp. 2381-2383 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A point of circular polarization embedded in a paraxial field of elliptical polarization is a polarization singularity called a C point. At such a point the major axis a and minor axis b of the ellipse become degenerate. Away from the C point this degeneracy is lifted such that surfaces a and b form nonanalytic cones that are joined at their apex (the C point) to produce a double cone called a diabolo. Typically, during propagation diabolo pairs are created or annihilated. We present rules based on geometry and topology that govern these events, provide initial experimental confirmation, and enumerate the allowed configurations in which diabolos can be created or annihilated.

© 2006 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1670) Coherence and statistical optics : Coherent optical effects
(260.0260) Physical optics : Physical optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(350.5030) Other areas of optics : Phase

ToC Category:
Coherence and Statistical Optics

Original Manuscript: May 25, 2006
Revised Manuscript: June 6, 2006
Manuscript Accepted: June 6, 2006
Published: July 25, 2006

Isaac Freund, Marat S. Soskin, Roman I. Egorov, and Vladimir Denisenko, "Diabolo creation and annihilation," Opt. Lett. 31, 2381-2383 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, 1999).
  2. J. F. Nye and J. V. Hajnal, Proc. R. Soc. London, Ser. A 409, 21 (1987).
  3. M. V. Berry and M. R. Dennis, Proc. R. Soc. London, Ser. A 457, 141 (2001).
  4. M. R. Dennis, Opt. Commun. 213, 201 (2002).
  5. I. Freund, M. S. Soskin, and A. I. Mokhun, Opt. Commun. 208, 223 (2002).
  6. M. V. Berry and M. R. Dennis, Proc. R. Soc. London, Ser. A 459, 1261 (2003).
  7. I. Freund, Opt. Lett. 29, 875 (2004). [PubMed]
  8. Y. A. Egorov, T. A. Fadeyeva, and A. V. Volyar, J. Opt. A, Pure Appl. Opt. 6, S217 (2004).
  9. R. I. Egorov, V. G. Denisenko, and M. S. Soskin, JETP Lett. 81, 375 (2005).
  10. D. W. Diehl, R. W. Schooner, and T. D. Visser, Opt. Express 14, 3030 (2006). [PubMed]
  11. M. V. Berry, Proc. R. Soc. London, Ser. A 461, 2071 (2005).
  12. R. I. Egorov, M. S. Soskin, and I. Freund, Opt. Lett. 31, 2048 (2006). [PubMed]
  13. M. V. Berry and M. Wilkinson, Proc. R. Soc. London, Ser. A 392, 15 (1984).
  14. M. V. Berry and J. H. Hannay, J. Phys. A 10, 1809 (1977).
  15. F. Faure and B. Zhillinski, Phys. Rev. Lett. 85, 960 (2000). [PubMed]
  16. L. F. Canto, P. Ring, Y. Sun, J. O. Rasmussen, S. Y. Chu, and M. A. Stoyer, Phys. Rev. C 47, 2836 (1993).
  17. A. S. Thorndike, C. R. Cooley, and J. F. Nye, J. Phys. A 11, 1455 (1978).
  18. M. V. Berry, M. J. Jeffrey, and J. G. Lunney, Proc. R. Soc. London, Ser. A 462, 1629 (2006).
  19. I. Freund, Phys. Rev. E 52, 2348 (1995).
  20. S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wessley, 1994), Chap. 6, pp. 174-180.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited