OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 16 — Aug. 15, 2006
  • pp: 2399–2401

Least-squares analysis of the Mueller matrix

Michael Reimer and David Yevick  »View Author Affiliations

Optics Letters, Vol. 31, Issue 16, pp. 2399-2401 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a single-mode fiber excited by light with a fixed polarization state, the output polarizations obtained at two different optical frequencies are related by a Mueller matrix. We examine least-squares procedures for estimating this matrix from repeated measurements of the output Stokes vector for a random set of input polarization states. We then apply these methods to the determination of polarization mode dispersion and polarization-dependent loss in an optical fiber. We find that a relatively simple formalism leads to results that are comparable with those of far more involved techniques.

© 2006 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties
(260.5430) Physical optics : Polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 3, 2006
Revised Manuscript: May 4, 2006
Manuscript Accepted: May 20, 2006
Published: July 25, 2006

Michael Reimer and David Yevick, "Least-squares analysis of the Mueller matrix," Opt. Lett. 31, 2399-2401 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Phua, J. Fini, and H. Haus, J. Lightwave Technol. 21, 982 (2003). [CrossRef]
  2. D. Tweed, in Proceedings of the International Conference on Pattern Recognition (IEEE Computer Society, 2004), Vol. 2, p. 171.
  3. U. Kintzel, Numer. Linear Algebra Appl. 1, 1 (2005).
  4. U. Kintzel, Ph.D. thesis (Technical University of Berlin, 2005).
  5. B. Huttner, C. Geiser, and N. Gisin, IEEE J. Sel. Top. Quantum Electron. 6, 317 (2000). [CrossRef]
  6. J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. U.S.A. 97, 4541 (2000). [CrossRef] [PubMed]
  7. S. Lu and R. Chipman, Opt. Commun. 146, 11 (1998). [CrossRef]
  8. M. Reimer and D. Yevick, J. Opt. Soc. Am. A 23, 1503 (2006). [CrossRef]
  9. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954). [CrossRef]
  10. J. Oteo and J. Ros, J. Math. Phys. 41, 3268 (2000). [CrossRef]
  11. M. Glasner and D. Yevick, Math. Comput. Modell. 16, 177 (1992). [CrossRef]
  12. D. Sandel, V. Mirvoda, S. Bhandare, F. Wust, and R. Noe, J. Lightwave Technol. 21, 1198 (2003). [CrossRef]
  13. M. Renardy, Numer. Linear Algebra Appl. 236, 53 (1996). [CrossRef]
  14. R. Jopson, L. Nelson, and H. Kogelnik, IEEE Photon. Technol. Lett. 11, 1153 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited