OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2532–2534

Anomalous dispersion in a solid, silica-based fiber

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello  »View Author Affiliations

Optics Letters, Vol. 31, Issue 17, pp. 2532-2534 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an all-solid (nonholey), silica-based fiber with anomalous dispersion at wavelengths where silica material dispersion is negative. This is achieved by exploiting the enhanced dispersion engineering capabilities of higher-order modes in a fiber, yielding + 60 ps nm km dispersion at 1080 nm . By coupling to the desired higher-order mode with low-loss in-fiber gratings, we realize a 5 m long fiber module with a 300 fs nm dispersion that yields a 1 dB bandwidth of 51 nm with an insertion loss of 0.1 dB at the center wavelength of 1080 nm . We demonstrate its functionality as a critical enabler for an all-fiber, Yb-based, mode-locked femtosecond ring laser.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 22, 2006
Revised Manuscript: May 15, 2006
Manuscript Accepted: May 31, 2006
Published: August 9, 2006

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000). [CrossRef]
  2. The MOF dispersion was approximated by calculations of dispersion in thin silica rods.
  3. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004). [CrossRef]
  4. S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005). [CrossRef]
  5. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, J. Lightwave Technol. 23, 3566 (2005). [CrossRef]
  6. S. Ramachandran, Z. Wang, and M. F. Yan, Opt. Lett. 27, 698 (2002). [CrossRef]
  7. D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001). [CrossRef]
  8. K. Tamura, E. Ippen, H. Haus, and L. Nelson, Opt. Lett. 18, 1080 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited