OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2544–2546

Power-weighted dispersion distribution function for characterizing nonlinear properties of long-haul optical transmission links

Xing Wei  »View Author Affiliations


Optics Letters, Vol. 31, Issue 17, pp. 2544-2546 (2006)
http://dx.doi.org/10.1364/OL.31.002544


View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the first-order perturbation theory, we introduce the power-weighted dispersion distribution (PWDD) function to characterize nonlinear properties of fiber-optic transmission links. This technique offers a new perspective on dispersion management for pseudolinear transmission. A rectangular PWDD model is used to describe the formation of ghost pulses analytically in the time domain without relying on the assumption that the pulse shape is Gaussian.

© 2006 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(260.2030) Physical optics : Dispersion

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 13, 2006
Revised Manuscript: June 8, 2006
Manuscript Accepted: June 9, 2006
Published: August 9, 2006

Citation
Xing Wei, "Power-weighted dispersion distribution function for characterizing nonlinear properties of long-haul optical transmission links," Opt. Lett. 31, 2544-2546 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-17-2544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, in Optical Fiber Telecommunications IV B, I.P.Kaminow and T.Li, eds. (Academic, 2002), pp. 232-304.
  2. H. Louchet, A. Hodzic, K. Petermann, A. Robinson, and R. Epworth, IEEE Photon. Technol. Lett. 17, 2089 (2005). [CrossRef]
  3. E. Narimanov and P. Mitra, J. Lightwave Technol. 20, 530 (2002). [CrossRef]
  4. I. R. Gabitov and S. K. Turitsyn, Opt. Lett. 21, 327 (1996). [CrossRef]
  5. M. J. Ablowitz and G. Biondini, Opt. Lett. 23, 1668 (1998). [CrossRef]
  6. A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 1633 (2000). [CrossRef]
  7. R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, IEEE Photon. Technol. Lett. 12, 1624 (2000). [CrossRef]
  8. A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, IEEE Photon. Technol. Lett. 13, 445 (2001). [CrossRef]
  9. A. Mecozzi, C. B. Clausen, and M. Shtaif, IEEE Photon. Technol. Lett. 12, 392 (2000). [CrossRef]
  10. X. Wei and X. Liu, Opt. Lett. 28, 2300 (2003). [CrossRef] [PubMed]
  11. X. Wei, X. Liu, S. H. Simon, and C. J. McKinstrie, Opt. Lett. 31, 29 (2006). [CrossRef] [PubMed]
  12. M. J. Ablowitz and T. Hirooka, Opt. Lett. 25, 1750 (2000). [CrossRef]
  13. P. Johannisson, D. Anderson, A. Berntson, and J. Mårtensson, Opt. Lett. 26, 1227 (2001). [CrossRef]
  14. M. J. Ablowitz and T. Hirooka, Opt. Lett. 27, 203 (2002). [CrossRef]
  15. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, IEEE Photon. Technol. Lett. 12, 489 (2000). [CrossRef]
  16. S. Kumar and D. Yang, J. Lightwave Technol. 23, 2073 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited