OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2583–2585

Localized vibrational modes in optically bound structures

Jack Ng and C. T. Chan  »View Author Affiliations

Optics Letters, Vol. 31, Issue 17, pp. 2583-2585 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show, through analytical theory and rigorous numerical calculations, that optical binding can organize a collection of particles into extended, periodic one-dimensional lattices. These lattices, as well as other optically bound structures, are shown to exhibit spatially localized vibrational eigenmodes. The origin of localization here is distinct from the usual mechanisms such as disorder, defect, or nonlinearity but is a consequence of the long-ranged nature of optical binding. For an array of particles trapped by an interference pattern, the stable configuration is often dictated by the external light source, but we observed that interparticle optical binding forces can have a profound influence on the dynamics.

© 2006 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(220.4880) Optical design and fabrication : Optomechanics

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 25, 2006
Revised Manuscript: June 12, 2006
Manuscript Accepted: June 14, 2006
Published: August 9, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Jack Ng and C. T. Chan, "Localized vibrational modes in optically bound structures," Opt. Lett. 31, 2583-2585 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970). [CrossRef]
  2. See e.g., D. G. Grier, Nature 424, 810 (2003). [PubMed]
  3. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Science 249, 749 (1990). [CrossRef] [PubMed]
  4. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, Phys. Rev. B 72, 085130 (2005). [CrossRef]
  5. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, Opt. Lett. 30, 1956 (2005). [CrossRef] [PubMed]
  6. P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 64, 035422 (2001). [CrossRef]
  7. D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57(1), 43 (2004). [CrossRef]
  8. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  9. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, J. Opt. Soc. Am. B 20, 1568 (2003). [CrossRef]
  10. N. K. Metzger, K. Dholakia, and E. M. Wright, Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  11. V. Garces-Chavez and K. Dholakia, Appl. Phys. Lett. 86, 031106 (2005). [CrossRef]
  12. C. D. Mellor and C. D. Bain, ChemPhysChem 7, 329 (2006). [CrossRef]
  13. The stable configurations calculated by the MS-MST formalism deviate from Eq. by less than 0.003 lambda.
  14. A. Chowdhury and B. Ackerson, Phys. Rev. Lett. 55, 833 (1985). [CrossRef] [PubMed]
  15. N. E. Cusack, The Physics of Structurally Disordered Matter: An Introduction (A. Hilger, 1987), p. 239.
  16. The finite coherent length of a real laser will effectively set an upper limit on N. In the unrealistic case where N-->∞, the modes for Eq. become extended modes, whereas Eq. diverges.
  17. M. I. Antonoyiannakis and J. B. Pendry, Phys. Rev. B 60, 613 (1997).
  18. A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited