OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 17 — Sep. 1, 2006
  • pp: 2586–2588

Tunable single-mode Fabry–Perot laser diode using a built-in external cavity and its modulation characteristics

Yong Deok Jeong, Yong Hyub Won, Sang Ook Choi, and Jong Hyun Yoon  »View Author Affiliations

Optics Letters, Vol. 31, Issue 17, pp. 2586-2588 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable single-mode laser is obtained by using a weakly coupled cavity structure involved in a coaxially packaged Fabry–Perot laser diode. The cleaved end facet of the coupling fiber becomes an optical reflector and forms an external cavity with a laser facet. The single-mode oscillation condition is controlled and stabilized by tuning the operating temperature. The tuning range is about 10 nm with the side-mode suppression ratio of more than 27 dB when the temperature changes from 11.5 ° C to 25 ° C . Direct modulation characteristics were investigated, and our results show that a shorter external cavity can bear deeper modulation depth.

© 2006 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 8, 2006
Revised Manuscript: June 7, 2006
Manuscript Accepted: June 8, 2006
Published: August 9, 2006

Yong Deok Jeong, Yong Hyub Won, Sang Ook Choi, and Jong Hyun Yoon, "Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics," Opt. Lett. 31, 2586-2588 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Buus and E. J. Murphy, J. Lightwave Technol. 24, 5 (2006). [CrossRef]
  2. V. Heikkinen, J. Aikio, T. Alajoki, J. Hiltunen, A.-J. Mattila, J. Ollila, and P. Karioja, IEEE Photon. Technol. Lett. 16, 1164 (2004). [CrossRef]
  3. M. Finto, M. Mcdonald, A. Daiber, W. B. Chapman, D. Li, M. Epitaux, E. Zbinden, J. Bennett, W. J. Kozlovsky, and J.-M. Verdiell, Intel Technol. J. 8, 101 (2004).
  4. K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabech, T. Nakazawa, and K. Morito, Electron. Lett. 40, 1187 (2004). [CrossRef]
  5. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, IEEE J. Quantum Electron. 41, 187 (2005). [CrossRef]
  6. Y. Zhao and C. Shu, IEEE Photon. Technol. Lett. 9, 1436 (1997). [CrossRef]
  7. L. Viana, S. S. Vianna, M. Oria, and J. W. R. Tabosa, Appl. Opt. 35, 368 (1997). [CrossRef]
  8. Y. Sidorin and D. Howe, Opt. Lett. 22, 802 (1997). [CrossRef] [PubMed]
  9. A. Q. Liu, X. M. Zhang, V. M. Murukeshan, C. Lu, and T. H. Cheng, IEEE J. Sel. Top. Quantum Electron. 8, 73 (2002). [CrossRef]
  10. O. Hirota and Y. Suematsu, IEEE J. Quantum Electron. QE-15, 142 (1979). [CrossRef]
  11. K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995). [CrossRef]
  12. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980). [CrossRef]
  13. T. Fujita, S. Ishizuka, K. Fhujito, H. Serizawa, and H. Sato, IEEE J. Quantum Electron. QE-20, 492 (1984). [CrossRef]
  14. R. W. Tkach and A. R. Chraplyvy, J. Lightwave Technol. 4, 1655 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited