OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 19 — Oct. 1, 2006
  • pp: 2870–2872

Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser

Franklyn Quinlan, Sangyoun Gee, Sarper Ozharar, and Peter J. Delfyett  »View Author Affiliations

Optics Letters, Vol. 31, Issue 19, pp. 2870-2872 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation ( 1 Hz to 100 MHz ) of the optical pulse train. The keys to obtaining this result were the laser’s high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.

© 2006 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 22, 2006
Revised Manuscript: July 20, 2006
Manuscript Accepted: July 21, 2006
Published: September 11, 2006

Franklyn Quinlan, Sangyoun Gee, Sarper Ozharar, and Peter J. Delfyett, "Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser," Opt. Lett. 31, 2870-2872 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, P. Kelkar, and V. Saxena, in IEEE/LEOS 2001 Annual Meeting Conference Proceedings (IEEE/LEOS, 2001), p. 253.
  2. P. Juodawlkis, J. C. Twitchell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, IEEE Trans. Microwave Theory Tech. 49, 1840 (2001). [CrossRef]
  3. H. F. Taylor, IEEE J. Quantum Electron. 15, 210 (1979). [CrossRef]
  4. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. A. Jiang, E. Ippen, and H. Yokoyama, Opt. Lett. 28, 813 (2003). [CrossRef] [PubMed]
  5. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, Opt. Lett. 30, 2742 (2005). [CrossRef] [PubMed]
  6. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, Electron. Lett. 35, 720 (1999). [CrossRef]
  7. D. J. Derickson, A. Mar, and J. E. Bowers, Electron. Lett. 26, 2026 (1990). [CrossRef]
  8. D. von der Linde, Appl. Phys. B 39, 201 (1986). [CrossRef]
  9. D. R. Hjelme and A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992). [CrossRef]
  10. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1997).
  11. D. W. Rush, G. L. Burdge, and P.-T. Ho, IEEE J. Quantum Electron. QE-22, 2088 (1986). [CrossRef]
  12. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 199 (2005). [CrossRef]
  13. N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989). [CrossRef]
  14. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, Opt. Express 14, 5346 (2006). [CrossRef] [PubMed]
  15. A. L. Lance, W. D. Seal, and F. Labaar, Int. J. Infrared Millim. Waves 11, 239 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited