OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 19 — Oct. 1, 2006
  • pp: 2891–2893

Pushing the hyperpolarizability to the limit

Juefei Zhou, Mark G. Kuzyk, and David S. Watkins  »View Author Affiliations

Optics Letters, Vol. 31, Issue 19, pp. 2891-2893 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use numerical optimization to find a one-dimensional potential energy function that yields the largest hyperpolarizability, which we find is within 30% of the fundamental limit. Our results reveal insights into the character of the potential energy functions and wave functions that lead to the largest hyperpolarizability. We suggest that donor–acceptor molecules with a conjugated bridge with many sites of reduced conjugation to impart conjugation modulation may be the best paradigm for making materials with huge hyperpolarizabilities that approach the fundamental limit.

© 2006 Optical Society of America

OCIS Codes
(020.4900) Atomic and molecular physics : Oscillator strengths
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

Original Manuscript: May 22, 2006
Revised Manuscript: July 7, 2006
Manuscript Accepted: July 19, 2006
Published: September 11, 2006

Juefei Zhou, Mark G. Kuzyk, and David S. Watkins, "Pushing the hyperpolarizability to the limit," Opt. Lett. 31, 2891-2893 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Y. Chen, L. Kuang, Z. Y. Wang, and E. H. Sargent, Nano Lett. 4, 1673 (2004). [CrossRef]
  2. C. E. Olson, M. J. R. Previte, and J. T. Fourkas, Nat. Mater. 1, 225 (2002). [CrossRef]
  3. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, Nature 398, 51 (1999). [CrossRef]
  4. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001). [CrossRef] [PubMed]
  5. A. Karotki, M. Drobizhev, Y. Dzenis, P. N. Taylor, H. L. Anderson, and A. Rebane, Phys. Chem. Chem. Phys. 6, 7 (2004). [CrossRef]
  6. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, J. Am. Chem. Soc. 125, 7860 (2003). [CrossRef] [PubMed]
  7. M. G. Kuzyk, Opt. Lett. 25, 1183 (2000). [CrossRef]
  8. M. G. Kuzyk, IEEE J. Sel. Top. Quantum Electron. 7, 774 (2001). [CrossRef]
  9. M. G. Kuzyk, Phys. Rev. Lett. 85, 1218 (2000). [CrossRef] [PubMed]
  10. M. G. Kuzyk, Opt. Lett. 28, 135 (2003). [CrossRef]
  11. M. G. Kuzyk, Phys. Rev. Lett. 90, 039902 (2003). [CrossRef]
  12. M. G. Kuzyk, J. Nonlinear Opt. Phys. Mater. 13, 461 (2004). [CrossRef]
  13. M. G. Kuzyk, Opt. Photonics News 14, 26 (2003). [CrossRef]
  14. K. Tripathi, J. Pérez Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, J. Chem. Phys. 121, 7932 (2004). [CrossRef]
  15. B. J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971). [CrossRef]
  16. M. G. Kuzyk, Phys. Rev. A 72, 053819 (2005). [CrossRef]
  17. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 6th ed. (Butterworth-Heinemanm, 2005).
  18. D. C. Sorensen, SIAM J. Matrix Anal. Appl. 13, 357 (1992). [CrossRef]
  19. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. Wright, SIAM J. Optim. 9, 112 (1998). [CrossRef]
  20. M. G. Kuzyk, J. Nonlinear Opt. Phys. Mater. 15, 77 (2006). [CrossRef]
  21. M. G. Kuzyk, Phys. Rev. Lett. 95, 109402 (2005). [CrossRef]
  22. M. G. Kuzyk and D. S. Watkins, http://arXiv.org/abs/physics/0601172.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited