OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 19 — Oct. 1, 2006
  • pp: 2894–2896

Quasi-phase-matched generation of optical intensity waves

Shmuel Sternklar, Er’el Granot, David Kwiat, Tal Arditi, Moshe Tur, and Shalva Ben-Ezra  »View Author Affiliations

Optics Letters, Vol. 31, Issue 19, pp. 2894-2896 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of modulated light in a nonlinear medium, when described in terms of intensity waves, depends critically on a phase-matching condition for the intensity waves. We formally develop the conditions for quasi-phase matching of the interacting intensity waves and show that a periodic nonlinearity can be utilized to eliminate the dephasing between them. This is verified using stimulated Brillouin scattering with a periodically nonlinear optical fiber that has a period length equal to one-half of the (modulation) wavelength of the intensity waves.

© 2006 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Nonlinear Optics

Original Manuscript: June 20, 2006
Revised Manuscript: July 19, 2006
Manuscript Accepted: July 20, 2006
Published: September 11, 2006

Shmuel Sternklar, Er'el Granot, David Kwiat, Tal Arditi, Moshe Tur, and Shalva Ben-Ezra, "Quasi-phase-matched generation of optical intensity waves," Opt. Lett. 31, 2894-2896 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962). [CrossRef]
  2. D. A. Fishman and J. A. Nagel, J. Lightwave Technol. 11, 1721 (1993). [CrossRef]
  3. A. Djupsjobacka, G. Jacobsen, and B. Tromborg, J. Lightwave Technol. 18, 416 (2000). [CrossRef]
  4. C. R. S. Fludger, V. Handerek, and R. J. Mears, J. Lightwave Technol. 19, 1140 (2001). [CrossRef]
  5. S. Sternklar and E. Granot, Opt. Lett. 28, 977 (2003). [CrossRef] [PubMed]
  6. E. Granot, S. Sternklar, D. Kwiat, T. Arditi, and M. Tur, Opt. Commun. 259, 328 (2006). [CrossRef]
  7. S. Sternklar, E. Granot, D. Kwiat, T. Arditi, and M. Tur, in Quantum Electronics and Laser Science Conference (Optical Society of America, 2006), paper QWF6.
  8. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  9. Usually the modified Bessel functions are denoted by Im [as in M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972)]; however, to distinguish it from the intensity we adopt the notation I.
  10. J. U. Kang, Y. J. Ding, W. K. Burns, and J. S. Melinger, Opt. Lett. 22, 862 (1997). [CrossRef] [PubMed]
  11. V. I. Kovalev and R. G. Harrison, Opt. Lett. 27, 2022 (2002). [CrossRef]
  12. N. S. Makarov and V. G. Bespalov, J. Opt. Soc. Am. B 22, 835 (2005). [CrossRef]
  13. D. L. Williams, D. P. West, and T. A. King, Opt. Commun. 148, 208 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited