OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 2 — Jan. 15, 2006
  • pp: 184–186

Coherence function analysis of the higher-order aberrations of the human eye

Karen M. Hampson, Edward A.H. Mallen, and Christopher Dainty  »View Author Affiliations

Optics Letters, Vol. 31, Issue 2, pp. 184-186 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measured the wavefront aberrations of the eyes of five subjects with a Shack–Hartmann sensor sampling at 21.2 Hz and decomposed the measurements into Zernike aberration terms up to and including the fifth radial order. Coherence function analysis was used to determine the common frequency components between the aberrations within subjects. We found the results to be highly subject dependent. The coherence values were typically < 0.4 . Possible reasons for this are discussed. Coherence function analysis is a useful tool that can be used in future investigations to determine correlations between the aberration dynamics of the eye and other physiological mechanisms.

© 2006 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Medical Optics and Biotechnology

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Karen M. Hampson, Edward A. Mallen, and Christopher Dainty, "Coherence function analysis of the higher-order aberrations of the human eye," Opt. Lett. 31, 184-186 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, J. Opt. Soc. Am. A 18, 497 (2001). [CrossRef]
  2. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and J. C. Dainty, Opt. Express 11, 2597 (2003). [CrossRef] [PubMed]
  3. T. Nirmaier, G. Pudasaini, and J. Bille, Opt. Express 11, 2704 (2003). [CrossRef] [PubMed]
  4. M. Zhu, M. J. Collins, and D. R. Iskander, Ophthalmic Physiol. Opt. 24, 562 (2004). [CrossRef] [PubMed]
  5. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, J. Opt. Soc. Am. A 22, 497 (2005). [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, Opt. Express 8, 631 (2001). [CrossRef] [PubMed]
  7. A. S. Eadie, J. R. Pugh, and B. Winn, Ophthalmic Physiol. Opt. 15, 311 (1995). [CrossRef] [PubMed]
  8. J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, 2000).
  9. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, J. Refract. Surg. 18, 652 (2002).
  10. P. D. Welch, IEEE Trans. Audio Electroacoust. AU-15, 70 (1967). [CrossRef]
  11. S. Y. Wang and M. X. Tang, IEEE Signal Process. Lett. 11, 326 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited