OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 2 — Jan. 15, 2006
  • pp: 223–225

250 mW, 1.5 μ m monolithic passively mode-locked slab-coupled optical waveguide laser

Jason J. Plant, Juliet T. Gopinath, Bien Chann, Daniel J. Ripin, Robin K. Huang, and Paul W. Juodawlkis  »View Author Affiliations

Optics Letters, Vol. 31, Issue 2, pp. 223-225 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the demonstration of a 1.5 μ m InGaAsP mode-locked slab-coupled optical waveguide laser (SCOWL) producing 10 ps pulses with energies of 58 pJ and average output powers of 250 mW at a repetition rate of 4.29 GHz. To the best of our knowledge, this is the first passively mode-locked slab-coupled optical waveguide laser. The large mode and low confinement factor of the SCOWL architecture allows the realization of monolithic mode-locked lasers with high output power and pulse energy. The laser output is nearly diffraction limited with M 2 values less than 1.2 in both directions.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3460) Lasers and laser optics : Lasers
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Jason J. Plant, Juliet T. Gopinath, Bien Chann, Daniel J. Ripin, Robin K. Huang, and Paul W. Juodawlkis, "250 mW, 1.5µm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223-225 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Sel. Top. Quantum Electron. 4, 209 (1998). [CrossRef]
  2. K. A. Williams, M. G. Thompson, and I. H. White, New J. Phys. 6 (2004).
  3. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, Electron. Lett. 40, 735 (2004). [CrossRef]
  4. H. F. Liu, S. Arahira, T. Kunii, and Y. Ogawa, IEEE Photon. Technol. Lett. 7, 1139 (1995). [CrossRef]
  5. H. A. Haus, Jpn. J. Appl. Phys. 20, 1007 (1981). [CrossRef]
  6. A. Mar, Laser Focus World , 31, 109 (1995).
  7. A. Mar, R. Helkey, T. Reynolds, J. Bowers, D. Botez, C. Zmudzinski, C. Tu, and L. Mawst, IEEE Photon. Technol. Lett. 5, 1355 (1993). [CrossRef]
  8. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, Opt. Lett. 30, 272 (2005). [CrossRef] [PubMed]
  9. E. Wintner and E. P. Ippen, Appl. Phys. Lett. 44, 999 (1984). [CrossRef]
  10. R. Olshansky, C. B. Su, J. Manning, and W. Powazinik, IEEE J. Quantum Electron. 20, 838 (1984). [CrossRef]
  11. P. B. Hansen, G. Raybon, U. Koran, P. P. Iannone, B. I. Miller, G. I. Young, M. A. Newkirk, and C. A. Burrus, Appl. Phys. Lett. 62, 1445 (1993). [CrossRef]
  12. S. Arahira and Y. Ogawa, Electron. Lett. 31, 808 (1995). [CrossRef]
  13. J. N. Walpole, J. P. Donnelly, P. J. Taylor, L. J. Missaggia, C. T. Harris, R. J. Bailey, A. Napoleone, S. H. Groves, S. R. Chinn, R. Huang, and J. Plant, IEEE Photon. Technol. Lett. 14, 756 (2002). [CrossRef]
  14. J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, IEEE Photon. Technol. Lett. 17, 735 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited