OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 20 — Oct. 15, 2006
  • pp: 3013–3015

Finite-dimensional model for defect-trapped light in planar periodic nonlinear structures

Alejandro B. Aceves and Tomáš Dohnal  »View Author Affiliations

Optics Letters, Vol. 31, Issue 20, pp. 3013-3015 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the dynamics of 2D gap solitons (GSs) in Bragg resonant nonlinear (photonic) gratings in the presence of localized defects. Previous work [ Stud. Appl. Math. 115, 209 (2005) ] explains the mechanism of trapping the GS-carried energy at a defect via a resonant energy transfer from the GS into defect modes. We derive a finite-dimensional model that describes the evolution of the defect-trapped state as an interaction of linear defect modes and show that this model approximates the full dynamics very well in the regime when moderate amounts of GS energy are trapped.

© 2006 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4320) Optical devices : Nonlinear optical devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Nonlinear Optics

Original Manuscript: April 26, 2006
Revised Manuscript: July 3, 2006
Manuscript Accepted: July 9, 2006
Published: September 25, 2006

Alejandro B. Aceves and Tomáš Dohnal, "Finite-dimensional model for defect-trapped light in planar periodic nonlinear structures," Opt. Lett. 31, 3013-3015 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R.E.Slusher and B.J.Eggleton, eds., Nonlinear Photonic Crystals (Springer-Verlag, 2003).
  2. S. F. Mingaleev and Y. S. Kivshar, Phys. Rev. Lett. 86, 5474 (2001). [CrossRef] [PubMed]
  3. D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794 (1988). [CrossRef] [PubMed]
  4. A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989). [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996). [CrossRef] [PubMed]
  6. T. Dohnal and A. B. Aceves, Stud. Appl. Math. 115, 209 (2005). [CrossRef]
  7. N. Aközbek and S. John, Phys. Rev. E 57, 2287 (1998). [CrossRef]
  8. A. B. Aceves, G. Fibich, and B. Ilan, Physica D 189, 277 (2004). [CrossRef]
  9. R. Morandotti, H. S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C. R. Stanley, and J. S. Aitchinson, Opt. Lett. 28, 834 (2003). [CrossRef] [PubMed]
  10. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt. Soc. Am. B 19, 1635 (2002). [CrossRef]
  11. < f,g > = int omegag*fdxdz and ||f||2L2(omega = < f,f gt;. For numerical purposes, Ω is large enough to enclose the defect, the supports of its defect modes, as well as of the trapped pulse.
  12. G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56, 600 (1986). [CrossRef] [PubMed]
  13. C. A. Kennedy and M. H. Carpenter, Technical Report NASA-2001-TM211038 (NASA Langley, 2001).
  14. T. Dohnal and T. Hagstrom, "Perfectly matched layers in photonics computations: 1D and 2D nonlinear coupled mode equations" (submitted to J. Comput. Phys.) .
  15. T. Hagstrom, "New results on absorbing layers and radiation boundary conditions," in Topics in Computational Wave Propagation, M.Ainsworth, P.Davies, D.Duncan, P.Martin, and B.Rynne, eds. (Springer-Verlag, 2003), Vol. 1. [CrossRef]
  16. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited