OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 21 — Nov. 1, 2006
  • pp: 3077–3079

Estimation of the power scintillation probability density function in free-space optical links by use of multicanonical Monte Carlo sampling

T. Kamalakis, T. Sphicopoulos, S. Sheikh Muhammad, and E. Leitgeb  »View Author Affiliations

Optics Letters, Vol. 31, Issue 21, pp. 3077-3079 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Free-space optics (FSO) can provide cost-effective, high-bandwidth, wireless connections. However, atmospheric turbulence may degrade the performance of FSO links by causing intensity and power scintillations at the receiver. Multicanonical Monte Carlo sampling is used in conjunction with the phase screen method to calculate the statistics, and particularly the probability density function (PDF), of the power fluctuations at an FSO receiver. This allows the efficient calculation of the PDF even for very small values with a limited number of iterations. The obtained PDF can be used to characterize the performance of the system in terms of the error probability.

© 2006 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(290.5930) Scattering : Scintillation
(350.5500) Other areas of optics : Propagation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 6, 2006
Manuscript Accepted: July 14, 2006
Published: October 11, 2006

T. Kamalakis, T. Sphicopoulos, S. Sheikh Muhammad, and E. Leitgeb, "Estimation of the power scintillation probability density function in free-space optical links by use of multicanonical Monte Carlo sampling," Opt. Lett. 31, 3077-3079 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kedar and S. Arnon, IEEE Commun. Mag. 42, 2 (2004). [CrossRef]
  2. V. W. S. Chan, J. Lightwave Technol. 21, 2811 (2003). [CrossRef]
  3. D. Yevick, IEEE Photon. Technol. Lett. 14, 1512 (2002). [CrossRef]
  4. R. Hozhonner and C. R. Menyuk, Opt. Lett. 28, 1894 (2003). [CrossRef]
  5. I. Neokosmidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, Opt. Lett. 30, 11 (2005). [CrossRef] [PubMed]
  6. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, JOM 4, 586 (2005).
  7. D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967). [CrossRef]
  8. J. M. Martin and S. M. Flatté, Appl. Opt. 27, 2111 (1988). [CrossRef] [PubMed]
  9. S. M. Flatté, C. Bracher, and G.-Y. Wang, J. Opt. Soc. Am. A 11, 2080 (1994). [CrossRef]
  10. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, Opt. Eng. 40, 1554 (2001). [CrossRef]
  11. L. C. Andrews and R. L. Phillips, J. Opt. Soc. Am. A 2, 160 (1985). [CrossRef]
  12. E. Leitgeb, S. Sheikh Muhammad, Ch. Chlestil, M. Gebhart, G. Kandus, and T. Javornik, presented at the 9th World Multiconference on Systems, Cybernetics and Informatics, Orlando, Fla., July 10-13, 2005.
  13. J. M. Martin and S. M. Flatté, J. Opt. Soc. Am. A 7, 838 (1990). [CrossRef]
  14. L. C. Andrews, J. Mod. Opt. 39, 1849 (1992). [CrossRef]
  15. N. Perlot, "Caractérisation des fluctuations du signal dans les communications optiques par modulation d'intensité et détection directe à travers le canal atmosphérique turbulent," Ph.D. thesis (L'Université de Valenciennes et du Hainaut-Cambrésis, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited