OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 21 — Nov. 1, 2006
  • pp: 3116–3118

110 W double-ended ytterbium-doped fiber superfluorescent source with M 2 = 1.6

P. Wang, J. K. Sahu, and W. A. Clarkson  »View Author Affiliations

Optics Letters, Vol. 31, Issue 21, pp. 3116-3118 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-power operation of a broadband superfluorescent fiber source has been achieved via the process of amplified spontaneous emission (ASE) in a double-clad Yb-doped multimode-offset-core fiber by using a novel fiber-end termination geometry to suppress lasing. The fiber was cladding pumped by a high-power diode source at 976 nm and yielded a maximum ASE output of 63 and 47 W from the two ends of the fiber, respectively. The maximum combined ASE output was 110 W with slope efficiency with respect to launched pump power of up to 68%. The wavelength spectrum of the ASE source spanned the range from 1032 to 1120 nm , and the bandwidth (FWHM) of the emission spectrum was 40 nm . The output beam was slightly multimode with a beam-quality factor ( M 2 ) of 1.6. The prospects for further improvement in performance are considered.

© 2006 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.6630) Lasers and laser optics : Superradiance, superfluorescence

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 5, 2006
Revised Manuscript: August 14, 2006
Manuscript Accepted: August 19, 2006
Published: October 11, 2006

P. Wang, J. K. Sahu, and W. A. Clarkson, "110 W double-ended ytterbium-doped fiber superfluorescent source with M2=1.6," Opt. Lett. 31, 3116-3118 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. Wysocki, M. J. Digonnet, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 12, 550 (1994). [CrossRef]
  2. M. Bashkansky, M. D. Duncan, L. Goldberg, J. P. Koplow, and J. Reintjes, Opt. Express 3, 305 (1998). [CrossRef] [PubMed]
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, Electron. Lett. 40, 70 (2004). [CrossRef]
  4. L. F. Kong, Q. H. Lou, J. Zhou, D. Xue, J. X. Dong, and Y. R. Wei, Opt. Laser Technol. 37, 597 (2005). [CrossRef]
  5. D. Marcuse, Appl. Opt. 14, 3016 (1975). [CrossRef] [PubMed]
  6. W. A. Clarkson and P. Wang, "Optical fiber device," UK patent application 0600179.6 (January 5, 2006).
  7. S. B. Poole, D. N. Payne, and M. E. Fermann, Electron. Lett. 21, 737 (1985). [CrossRef]
  8. A. Liu and K. Ueda, Opt. Commun. 132, 511 (1996). [CrossRef]
  9. R. F. Kalman, M. J. F. Digonnet, and P. F. Wysocki, in Proc. SPIE 1373, 209 (1990). [CrossRef]
  10. I. N. Duling III, R. P. Moeller, W. K. Burns, C. A. Villarruel, L. Goldberg, E. Snitzer, and H. Po, IEEE J. Quantum Electron. 27, 995 (1991). [CrossRef]
  11. D. Marcuse, J. Opt. Soc. Am. 66, 1025 (1976). [CrossRef]
  12. M. J. F. Digonnet and L. Liu, J. Lightwave Technol. 7, 1009 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited