OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 21 — Nov. 1, 2006
  • pp: 3179–3181

Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity

Thilo Kraetschmer, Joachim W. Walewski, and Scott T. Sanders  »View Author Affiliations

Optics Letters, Vol. 31, Issue 21, pp. 3179-3181 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dispersive grating compressor was included in a fiber ring laser to generate an unequally spaced frequency comb spanning 1549 1552 nm . Beating of nearby modes in the comb naturally assigns unique amplitude modulation frequencies to each spectral component emitted. The source contains no moving parts. The single-mode fiber-coupled output is directed through hydrogen cyanide gas and detected by a photodiode. A Fourier transform of a 1 ms record yields a spectrum that agrees with results from a grating spectrometer at 0.06 nm resolution. By engineering stable, broadband combs, the technique could result in a universal and simple approach for spectroscopy at almost arbitrary measurement speeds and spectral resolutions limited only by Fourier principles.

© 2006 Optical Society of America

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: May 31, 2006
Revised Manuscript: August 3, 2006
Manuscript Accepted: August 3, 2006
Published: October 11, 2006

Thilo Kraetschmer, Joachim W. Walewski, and Scott T. Sanders, "Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity," Opt. Lett. 31, 3179-3181 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Christy, Y. Ozaki, and V. G. Gregoriou, Modern Fourier Transform Infrared Spectroscopy (Elsevier, 2001).
  2. G. W. Chantry, Long-Wave Optics: Vol. 1. the Science and Technology of Infrared and Near-Millimetre Waves (Academic, 1984), p. 790.
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005). [CrossRef] [PubMed]
  4. D. W. van der Weide, J. Murakowski, and F. Keilmann, IEEE Trans. Microwave Theory Tech. 48, 740 (2000). [CrossRef]
  5. D. W. van der Weide and F. Keilmann, "Coherent periodically pulsed radiation spectrometer," U.S. patent 5,748,309 (May 5, 1998).
  6. Th. Kraetschmer, J. W. Walewski, and S. T. Sanders, Opt. Eng. 45, 050502 (2006). [CrossRef]
  7. S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 75, 799 (2002). [CrossRef]
  8. L. A. Kranendonk, A. W. Caswell, A. N. Myers, and S. T. Sanders, in SAE 2003 Transactions Journal of Engines (SAE International, 2003), pp. 1578-1583.
  9. J. W. Walewski and S. T. Sanders, Appl. Phys. B: Photophys. Laser Chem. 79, 415 (2004).
  10. M. Asano and S. Yamashita, in Proc. SPIE 6102, 610218 (2006). [CrossRef]
  11. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006). [CrossRef] [PubMed]
  12. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst. (to be published).
  13. A. K. Verma, R. P. Ratowsky, D. A. Francis, S. P. Dijaili, and J. D. Walker, in Proc. SPIE 5248, 203 (2003). [CrossRef]
  14. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969). [CrossRef]
  15. Th. Kraetschmer and S. T. Sanders, "Enhancing the spectral coverage of a CW frequency comb using closed-loop control of an intracavity programmable spectral filter," IEEE Photon. Technol. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited