OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 22 — Nov. 15, 2006
  • pp: 3252–3254

Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam–Berry phase optical elements

Yaniv Yirmiyahu, Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman  »View Author Affiliations

Optics Letters, Vol. 31, Issue 22, pp. 3252-3254 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transformation and inverse transformation between a free-space linearly polarized beam and the vectorial vortex mode of a circular hollow waveguide by use of Pancharatnam–Berry phase optical elements is proposed. Demonstration was achieved by fabricating GaAs subwavelength gratings and utilizing a 300 μ m diameter hollow metallic waveguide for 10.6 μ m wavelength CO 2 laser radiation. The mode transformations and the excitation of a single vectorial mode inside the hollow waveguide were verified by full polarization measurements. In addition, the inverse mode transformation of the single vectorial mode excitation in the waveguide enabled us to experimentally obtain a linearly polarized bright spot with a high central lobe.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 24, 2006
Manuscript Accepted: August 22, 2006
Published: October 26, 2006

Yaniv Yirmiyahu, Avi Niv, Gabriel Biener, Vladimir Kleiner, and Erez Hasman, "Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements," Opt. Lett. 31, 3252-3254 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  2. M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984). [CrossRef]
  3. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Express 14, 4208 (2006). [CrossRef] [PubMed]
  4. H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002). [CrossRef]
  5. J. S. Kim, C. Codemard, J. Nilsson, and J. K. Sahu, Electron. Lett. 42, 515 (2006). [CrossRef]
  6. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, Opt. Express 14, 3929 (2006). [CrossRef] [PubMed]
  7. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002). [CrossRef] [PubMed]
  8. M. Bayindir, O. Shapira, D. S. Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Nat. Mater. 4, 820 (2005). [CrossRef]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000). [CrossRef]
  10. E. Hasman, G. Biener, A. Niv, and V. Kleiner, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 215-289. [CrossRef]
  11. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 30, 2933 (2005). [CrossRef] [PubMed]
  12. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005). [CrossRef]
  13. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited