OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 23 — Dec. 1, 2006
  • pp: 3447–3449

Channel plasmon-polaritons: modal shape, dispersion, and losses

Esteban Moreno, F. J. Garcia-Vidal, Sergio G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi  »View Author Affiliations


Optics Letters, Vol. 31, Issue 23, pp. 3447-3449 (2006)
http://dx.doi.org/10.1364/OL.31.003447


View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study channel plasmon-polaritons (CPPs) with a geometry similar to that in recent experiments at telecommunication wavelengths [ Bozhevolnyi et al., Nature 440, 508 (2006) ]. The CPP modal shape, dispersion relation, and losses are simulated by using the multiple multipole method and the finite difference time domain technique. It is shown that, with an increase of the wavelength, the fundamental CPP mode shifts progressively toward the groove opening, ceasing to be guided at the groove bottom and becoming hybridized with wedge plasmon-polaritons running along the groove edges.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Integrated Optics

History
Original Manuscript: July 31, 2006
Manuscript Accepted: September 14, 2006
Published: November 9, 2006

Citation
Esteban Moreno, F. J. Garcia-Vidal, Sergio G. Rodrigo, L. Martin-Moreno, and Sergey I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-23-3447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  2. P. Berini, Opt. Lett. 24, 1011 (1999). [CrossRef]
  3. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004). [CrossRef] [PubMed]
  4. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  6. I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002). [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005). [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006). [CrossRef] [PubMed]
  10. C. Hafner, Post-Modern Electromagnetics (Wiley, 1999).
  11. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  12. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005). [CrossRef]
  13. D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004). [CrossRef]
  14. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited