OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 3 — Feb. 1, 2006
  • pp: 317–319

All-fiber multimode-interference-based refractometer sensor: proposal and design

Qian Wang and Gerald Farrell  »View Author Affiliations


Optics Letters, Vol. 31, Issue 3, pp. 317-319 (2006)
http://dx.doi.org/10.1364/OL.31.000317


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel all-fiber refractometer sensor is proposed, which is based on multimode interference in the multimode fiber core section sandwiched between two single-mode fibers. A wide-angle beam propagation method in the cylindrical coordinate is employed as the modeling tool for simulation and design of the proposed refractometer sensor. The design for a refractometer is presented that shows that the refractometer would have an estimated resolution of 5.4 × 10 5 for refractive indices from 1.33 to 1.45 and of 3.3 × 10 5 for refractive indices from 1.38 to 1.45 through the choice of an appropriate length of the multimode fiber core section.

© 2006 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.0230) Optical devices : Optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 15, 2005
Revised Manuscript: November 2, 2005
Manuscript Accepted: November 4, 2005

Citation
Qian Wang and Gerald Farrell, "All-fiber multimode-interference-based refractometer sensor: proposal and design," Opt. Lett. 31, 317-319 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, J. Lightwave Technol. 17, 857 (1999). [CrossRef]
  2. R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, and L. Zeni, IEEE Sens. J. 3, 652 (2003). [CrossRef]
  3. B. Maisenholder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, Electron. Lett. 35, 986 (1997). [CrossRef]
  4. Z. Zhou and F. F. Liu, J. Opt. Soc. Am. A 8, 322 (1991). [CrossRef]
  5. W. Johnstone, G. Thursby, D. Moodie, and K. McCallion, Opt. Lett. 17, 1538 (1992). [CrossRef] [PubMed]
  6. G. Raizada and B. P. Pal, Opt. Lett. 21, 399 (1996). [CrossRef] [PubMed]
  7. A. Kumar, R. K. Varshney, A. C. Siny, and P. Sharma, Opt. Commun. 219, 215 (2003). [CrossRef]
  8. Y. Jung, Y. S. Jeong, J. Kim, S. Yoo, and K. Oh, in ECOC 2004 Proceedings, 3, paper We4.P.031.
  9. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995). [CrossRef]
  10. A. Mehta, W. S. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003). [CrossRef]
  11. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004). [CrossRef]
  12. G. R. Hadley, Opt. Lett. 17, 1743 (1992). [CrossRef] [PubMed]
  13. J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, IEEE Photon. Technol. Lett. 8, 236 (1996). [CrossRef]
  14. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, IEEE Photon. Technol. Lett. 8, 649 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited