OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 3 — Feb. 1, 2006
  • pp: 404–406

Thermo-optical sensitivity analysis in photonic crystal circuits based on semiconducting or metallic metamaterial constituents

Nikolaos J. Florous, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations

Optics Letters, Vol. 31, Issue 3, pp. 404-406 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a novel analysis technique for predicting thermo-optical sensitivities in photonic crystal (PC) circuits composed of either dielectric–semiconducting or metallic constituents. The proposed numerical analysis is based on a hybrid formalism of the scattering matrix technique combined with the adjoint network method. The proposed computational scheme can, with modest computational resources, predict with high accuracy, the effect of the temperature fluctuations to the light-wave propagation in PCs. Numerical simulations show that PC circuits based on metallic metamaterial platforms are significantly less sensitive to temperature variations than the usual dielectric or semiconducting PCs.

© 2006 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

Original Manuscript: September 12, 2005
Revised Manuscript: October 6, 2005
Manuscript Accepted: October 14, 2005

Nikolaos J. Florous, Kunimasa Saitoh, and Masanori Koshiba, "Thermo-optical sensitivity analysis in photonic crystal circuits based on semiconducting or metallic metamaterial constituents," Opt. Lett. 31, 404-406 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990). [CrossRef] [PubMed]
  2. Y. Jiao, S. Fan, and D. A. B. Miller, Opt. Lett. 30, 302 (2005). [CrossRef] [PubMed]
  3. A. Chutinan and S. Noda, J. Opt. Soc. Am. B 16, 240 (1999). [CrossRef]
  4. B. T. Schwartz and R. Piestun, J. Opt. Soc. Am. B 20, 2448 (2003). [CrossRef]
  5. V. Poborchii, T. Taya, T. Kanayama, and A. Moroz, Appl. Phys. Lett. 82, 508 (2003). [CrossRef]
  6. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, Phys. Rev. B 50, 16835 (1994). [CrossRef]
  7. R. C. McPhedran, L. C. Botten, A. A. Asatryan, N. A. Nicorovici, P. A. Robinson, and C. M. Stekre, Phys. Rev. E 60, 7614 (1999). [CrossRef]
  8. F. Alessandri, M. Mongiardo, and R. Sorrentino, IEEE Microw. Guid. Wave Lett. 3, 414 (1993). [CrossRef]
  9. J. W. Bandler and R. E. Seviora, IEEE Trans. Microwave Theory Tech. MTT-20, 138 (1972). [CrossRef]
  10. F. Abeles, Optical Properties of Solids (North-Holland, 1972).
  11. P. Halevi and E. R. Mendieta, Phys. Rev. Lett. 85, 1875 (2000). [CrossRef] [PubMed]
  12. P. I. Borel, A. Harpoth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, Opt. Express 12, 1996 (2004). [CrossRef] [PubMed]
  13. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited