OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 4 — Feb. 15, 2006
  • pp: 453–455

Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid

Frank Vollmer and Peer Fischer  »View Author Affiliations

Optics Letters, Vol. 31, Issue 4, pp. 453-455 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (65 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chiral liquids rotate the plane of polarization of linearly polarized light and are therefore optically active. Here we show that optical rotation can be observed in the frequency domain. A chiral liquid introduced in a fiber-loop ring resonator that supports left and right circularly polarized modes gives rise to relative frequency shifts that are a direct measure of the liquid’s circular birefringence and hence of its optical activity. The effect is in principle not diminished if the circumference of the ring is reduced. The technique is similarly applicable to refractive index and linear birefringence measurements.

© 2006 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.1440) Physical optics : Birefringence

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 22, 2005
Revised Manuscript: November 11, 2005
Manuscript Accepted: November 12, 2005

Frank Vollmer and Peer Fischer, "Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid," Opt. Lett. 31, 453-455 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Le Grand and A. Le Floch, Opt. Lett. 17, 360 (1992). [PubMed]
  2. M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).
  3. J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998). [PubMed]
  4. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).
  5. T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).
  6. V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).
  7. P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).
  8. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982). [PubMed]
  9. J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).
  10. A. Melloni, F. Morichetti, and M. Martinelli, Opt. Lett. 29, 2785 (2004). [PubMed]
  11. A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).
  12. Z. K. Ioannidis, R. Kadiwar, and I. P. Giles, Opt. Lett. 14, 520 (1989). [PubMed]
  13. H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited