OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 4 — Feb. 15, 2006
  • pp: 471–473

Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen  »View Author Affiliations


Optics Letters, Vol. 31, Issue 4, pp. 471-473 (2006)
http://dx.doi.org/10.1364/OL.31.000471


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A shape reconstruction algorithm for optical tomography is introduced that uses a level-set formulation for the shapes. Evolution laws based on gradient directions for a cost functional are derived for two different level-set functions, one describing the absorption and one the diffusion parameter, as well as for the parameter values inside these shapes. Numerical experiments are presented in 2D that show that the new method is able to simultaneously recover shapes and contrast values of absorbing and scattering objects embedded in a moderately heterogeneous background medium from simulated noisy data.

© 2006 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 12, 2005
Manuscript Accepted: October 11, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique," Opt. Lett. 31, 471-473 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-4-471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001). [CrossRef]
  2. B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, J. Biomed. Opt. 5, 185 (2000). [CrossRef] [PubMed]
  3. M. Cope and D. T. Delpy, Med. Biol. Eng. Comput. 26, 289 (1988). [CrossRef] [PubMed]
  4. S. R. Arridge, Inverse Probl. 15, R41 (1999). [CrossRef]
  5. O. Dorn, E. L. Miller, and C. Rappaport, Inverse Probl. 16, 1119 (2000). [CrossRef]
  6. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).
  7. F. Santosa, ESAIM Control, Optim. Calcul. Var. 1, 17 (1996). [CrossRef]
  8. J. A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge U. Press, 1999).
  9. E. T. Chung, T. F. Chan, and X.-C. Tai, J. Comput. Phys. 205, 357 (2005). [CrossRef]
  10. X.-C. Tai and T. F. Chan, Int. J. Num. Anal. Mod. 1, 25 (2004).
  11. P. González-Rodriguez, M. Kindelan, M. Moscoso, and O. Dorn, Inverse Probl. 21, 565 (2005). [CrossRef]
  12. S. R. Arridge, Appl. Opt. 34, 7395 (1995). [CrossRef] [PubMed]
  13. M. Schweiger, S. R. Arridge, and I. Nissilä, Phys. Med. Biol. 50, 2365 (2005). [CrossRef] [PubMed]
  14. P. C. Hansen and D. P. O'Leary, SIAM J. Sci. Comput. (USA) 14, 1487 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited